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Course Outline:

 Part-I- Statics

o Principles of Statics.

o Resultants of Force Systems.
o Equilibrium of Force Systems.
o Friction.

o Centers of Gravity.

o Moment of Inertia.

<&

 Part- I1- Dynamics

o Principles of Dynamics.
o Rectilinear Motion.

o Curvilinear Motion.

o Rotation.

o Energy and Work.

o Mechanical Vibration



Basic Concepts

% Mechanics: is a branch of the physical sciences that is concerned with the state of

rest or motion of bodies that are subjected to the action of forces.

—3 Statics
—2 | Mechanics of Rigid
bodies :
2| Dynamics
Classification of Englneerlng N B
Mechanics Sl
—>| Statics
—> | Mechanics of fluid F—>

—2> Dynamics

o Statics : deals with the equilibrium of bodies, that is, those that are either at rest or
move with a constant velocity.

o Dynamics: is concerned with the accelerated motion of bodies.
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O Fundamental Concepts : Before we begin our study of engineering

mechanics, it iIs important to understand the meaning of certain

fundamental concepts and principles.
o Basic Quantities. The following four quantities are used throughout mechanics.

= Length. Length is used to locate the position of a point in space and thereby describe
the size of a physical system. Some important length conversions factors as shown

below.
1 kilometer = 1000 meters 1 mile = 1760 yards
1 meter = 100 centimeters 1 mile = 5280 feet
1 centimeter = 10 millimeters 1 yard = 3 feet

1 foot = 12 inches

= Time. Time is conceived as a succession of events. Although the principles of statics
are time-independent, this quantity plays an important role in the study of dynamics.
Some important time conversions factors as shown below.

1 hour = 60 minutes 1 week = 7 days

1 minute = 60 seconds 1 year = 365 days
1 hour = 60 minutes 1 year = 12 months
1 day = 24 hours lyear = 52 weeks




= Mass. Mass is a measure of a quantity of matter that is used to compare the action of one
body with that of another. This property manifests itself as a gravitational attraction
between two bodies and provides a measure of the resistance of matter to a change in
velocity. Some important mass conversion factor as shown below

1 Kg = 2.204 Ibm

= Force. In general, force is considered as a “push” or “pull” exerted by one body on
another. This interaction can occur when there is direct contact between the bodies, such as
a person pushing on a wall, or it can occur through a distance when the bodies are
physically separated. Some important force units and conversion factors as shown below.

newton | dyne 'kllogram-torce,i
(Sl unlt) | kllopond

IN [=1kgmist |=10°dyn  |=010197kp  |=0224811b  |=7.2330 pl

pound-force poundal

1dyn|=10°N  [=1gomist |=1.0197x10" kp |=2.2481x10° I, |~ 7.2330x10™° pd

1kp [=9.80685N |=9806650yn =g, (1k) 22046, |=70932pd
11b, |~4.448222 N |= 444822 dyn |<0.4505%kp  |=,:(11b) =32.174 pdl
1pdl |=0.138255 N |~ 13825 dyn |=0014098kp  |[=0.0310811b  [=1 Ipfs?

|
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o ldealizations. idealizations or models are used in mechanics in order to simplify
the application of the theory. The following are three important idealizations.

= Particle. A particle has a mass, but a size that can be neglected. For example, the size of the
earth is insignificant compared to the size of its orbit, and therefore the earth can be modeled
as a particle when studying its orbital motion.

8 o

Fig.1, Three forces act on the ring. Since these forces all meet at point, then for any force
analysis, we can assume the ring to be represented as a particle.



Rigid Body. A rigid body can be considered as a combination of a large number of
particles in which all the particles remain at a fixed distance from one another, both before
and after applying a load.

v This model is important because the body’s shape does not change when a load is
applied, and so we do not have to consider the type of material from which the body
IS made.

v In most cases, the actual deformations occurring in structures, machines,
mechanisms, and the like are relatively small, and the rigid-body assumption is
suitable for analysis.

deformable
body

rigid body

Fig.,2



Concentrated Force. A concentrated force represents the effect of a loading which is
assumed to act at a point on a body.

v" We can represent a load by a concentrated force, provided the area over which the
load is applied is very small compared to the overall size of the body.

v An example would be the contact force between a wheel and the ground.

under load. Therefore, we can consider this railroad wheel to be a rigid body
acted upon by the concentrated force of the rail.



o Newton’s Three Laws of Motion. Engineering mechanics is formulated on the basis of
Newton’s three laws of motion, the validity of which is based on experimental observation.
These laws apply to the motion of a particle as measured from a nonaccelerating reference
frame. They may be briefly stated as follows.

= First Law. A particle originally at rest, or moving in a straight line with constant velocity,
tends to remain in this state provided the particle is not subjected to an unbalanced force,
Fig.4a, .

= Second Law. A particle acted upon by an unbalanced force F experiences an acceleration a
that has the same direction as the force and a magnitude that is directly proportional to the
force, Fig.4b. If F is applied to a particle of mass m , this law may be expressed
mathematically as

= Third Law. The mutual forces of action and reaction between two particles are equal,
opposite, and collinear, Fig. 4c,.

F, F,
v F = ma IIr_,.flurv:u_' of A on B
F —
A B force of Bon A
h i Accelerated motion Action — reaction
Equilibrium

Fig.4a, Fig.4b, Fig.4c,



o Newton’s Law of Gravitational Attraction. Shortly after formulating his three laws of

motion, Newton postulated a law governing the gravitational attraction between any two
particles. Stated mathematically,

F F my
F=G% ..................... (2) (5—’ ““““ ~—9

where B d i
/= force of gravitation between the two particles

G = universal constant of gravitation; according to experimental evidence, G =66.73(107'?) m3/(kg . s?)
m4, m, = mass of each of the two particles
r= distance between the two particles

o Gravitational Attraction of the Earth

v Weight of a Body: If a particle is located at or near the surface of the earth, the only significant
gravitational force is that between the earth and the particle.
* Weight of a particle having mass m; = m :
» Assuming earth to be a nonrotating sphere of constant density and having mass m, = M,
* 1 = distance between the earth’s center and the particle

: ) m
« g= acceleration due to gravity =9.81 m/s?




o Systems of units
In engineering mechanics length, mass, time and force are the basic units used therefore;
the following are the units systems are adopted in the engineering mechanics

= [nternational System of Units (SI):
In S| system of units the basic units are length, time, and mass which are arbitrarily
defined as the meter (m), second (s), and kilogram (kg). Force is the derived unit.

IN =1 kg. m/s?
= CGS systems of units
In CGS system of units, the basic units are length, time, and mass which are arbitrarily defined as

the centimeter (cm), second (s), and gram (g). Force is the derived units

1Dyne=1g. cm/s?
= British systems of units
In CGS system of units, the basic units are length, time, and mass which are arbitrarily defined as

the foot , second, and pound. Force is the derived units

= U.S. Customary Units
The basic units are length, time, and force which are arbitrarily defined as the foot (ft), second (s),
and pound (Ib). Mass is the derived unit,



Ex.1. Convert 2 km/h to m/s How many ft/s is this?

Sol.

Since 1 km =1000 mand 1 h = 3600 s, the factors of conversion are arranged in the
following order, so that a cancellation of the units can be applied:

2
2km/h = 2 Jri 1000 m)( | K )

K\ kai J\3600s
2000 m _ )
= 3600 < = 0.356 m/s

1 ft = 0.3048 m. Thus,

0556 ,I_(ﬂ.ﬁjﬁmx | fi )
IR ISE ; 0.3048 pf

1.82 ft /s




Ex.2. Convert the quantities 300 Ib .s and 52 slug/ft3to appropriate Sl units.

Sol.
11b=4.448 N, 1slug =14.59kg and 1 ft =0.3048 m , then

1)  3001b-s

31}[]]5-5:(4'4485)

| b
= 13345N-5s = 133 kN -s

2) 52 slug /ft’

_5151{@{14_59@)( | )-‘
¢ \ 1skg /\03048m

= 26.8(107) kg/m"
= 26.8 Mg/m’



o Scalars and Vectors

A scalar is any positive or negative physical quantity that can be completely specified

by its magnitude . Examples of scalar quantities include,
* length
* Mass
* time

A vectoris any physical quantity that requires both a /magnitude and a direction for its

complete description. Examples of vectors encountered in statics are,

« force,
* Position Ll
* moment. A
 Avector is shown graphically by an arrow. Tail
o

Line of action
Head —_ ’>»'
j’J

1
20

|

The length of the arrow represents the magnitude of the vector.

The head or tip of the arrow indicates the sense of direction of the vector.

italicized, A.

-

arrow above it, A.

the angle 6 between the vector and a fixed axis defines the direction of its line of action.

Vector quantities are represented by boldface letters such as A, and the magnitude of a vector is

For handwritten work, it is often convenient to denote a vector quantity by simply drawing an



¢ Vector Operations

v If a vector is multiplied by a positive scalar, its magnitude is
increased by that amount.

v' Multiplying by a negative scalar will also change the
directional sense of the vector.

v' Graphic examples of these operations are shown in Fig. below. Scalar multiplication and division

v" All vector quantities obey the parallelogram law of addition .
v" To illustrate, the two “ component ” vectors A and B in (Fig.a) are added to form a “ resultant
vector R = A + B using the following procedure:

First join the tails of the components at a point to make them concurrent, Fig.b .

From the head of B, draw a line parallel to A .

Draw another line from the head of A that is parallel to B .

These two lines intersect at point # to form the adjacent sides of a parallelogram.

The diagonal of this parallelogram that extends to P forms R , which then represents the

resultant vector R = A + B Fig.c,

Ok whPE

A

N

R=A+R
Parallelogram law

(a) (b) (c)



v We can also add B to A, Fig.2a, using the #riangle rule , which is a special case of the
parallelogram law.

1. whereby vector B is added to vector A in a “head-to-tail” fashion, i.e., by connecting the head of A
to the tail of B , Fig. 25.

2. The resultant R extends from the tail of A to the head of B . In a similar manner, R can also be
obtained by adding Ato B, Fig. 2c.

3. By comparison, it is seen that vector addition is commutative; in other words, the vectors can be
added in either order, i.e.,

R=A+B=B+A.

A N B
i £

£

B e
B

R=A+1B R=0B4+ A
Triangle rule Triangle rule
(=) (b} (<)
Fig.2

v As a special case, if the two vectors A and B are collinear , i.e., both have the same line of action,
the parallelogram law reduces to an algebraic or scalar addition R= A+ B, as shown in Fig.3.,

~ R -
A B
R=A+ R

Addition of collinear vectors

Fig.3




The resultant of the difference between two vectors A and B of the same

type may be expressed as
yP y P RR=A—- B = A+ (—B)

v" Subtraction is therefore defined as a special case of addition, so the rules of vector addition also

apply to vector subtraction as shown in Fig.4,

R! ..'1

B —B

Parallelogram law Triangle construction

Vector subtraction

Fig.4



+» \Vector Addition of Forces

The two component forces F:and F:acting on the pin in Fig.5a can be added together to form the

resultant force F== F.+ F, as shown in Fig. 56 . From this construction, or using the triangle

rule, Fig.5¢, we can apply the law of cosines or the law of sines to the triangle in order to obtain

the magnitude of the resultant force and its direction.

(b)

Fig.5

Fp=VF}+ F; — 2FF;cos
- R R Ry
sin & ~ sin 1, " sin g

Or

AfE B
b a
C.‘
Cosine law:
C=vA*+ B* — 2ABcosc
Sine law:
A _ B C

sing snP sing




Sometimes it is necessary to resolve a force into two
components in order to study its pulling or pushing effect in two specific directions.
In Fig. 6 a, F is to be resolved into two components along the two members, defined by the u
and v axes.

To determine the magnitude of each component for Fig.6a, a parallelogram is constructed.

v'drawing lines starting from the tip of F, one line parallel to u , and the other line parallel to v.

v" These lines then intersect with the v and u axes, forming a parallelogram.

v The force components Fu and Fv are then established by simply joining the tail of F to the
intersection points on the u and v axes, Fig.6 b.

v" This parallelogram can then be reduced to a triangle, which represents the triangle rule, Fig.
6cC.

v From this, the law of sines can then be applied to determine the unknown magnitudes of the
components.

o i

/ : / ,,,

i u . u

(2) (b) ()

Fig.6,



o Addition of Several Forces. If more than two forces are to be added, successive applications of
the parallelogram law can be carried out in order to obtain the resultant force. For example, if
three forces F1, F2, Fzact at a point O, as show in below Figs7.,

(A Fr

Figs7.

v" Resultant of any two of the forces = F1 + F2 Fig.8a

Resultant of all three forces, i.e Fr = (F1 + F2) + Fs.
To determine the numerical values for the magnitude and direction of the resultant rectangular-
component method as show below,

AN

Fy a a
. F=F,+F, oo ) F=Z_>Fx=F(;)
i - 1
¥, F,=Fcos@ F, h <
& F.,=Fsin@ F.
> xl Y . _y=2—)F=_F(2)
¥, F c Y c

» The direction of F can also be defined using a small “slope” triangle,
« The y component is a negative scalar since Fy is directed along the
negative y axis.



EX.3. The screw eye in Fig.8a is subjected to two forces, F: and F.. Determine the magnitude and

10
-,7 Fy =150

direction of the resultant force.

Sol.

The parallelogram is formed by drawing a line from the head of F:
that is parallel to F2 , and another line from the head of F- that is parallel to F: . The
resultant force Fr extends to where these lines intersect at point A, Fig. 8 6. The two
unknowns are the magnitude of Frand the angle 6 (theta).

From the parallelogram, the vector triangle is constructed, Fig. 8 c.
Using the law of cosines

Fp = VF} + F} — 2 F\F;cos b
Fy F Fa

sin @) B sin 6  sin g

Fp= \/(100 N)2+(150 N)2 —2(100 N)(150N)cos 115° = 212.6N ~ 213N

» Applying the law of sines to determine 6,

150N 212.6N . 150N . ° °
— = — 5 ) sinf = (sin115) =60 =39.8
sin 0 sin 115 212.6N

» Thus, the direction @ (phi) of F», measured from the horizontal, is

®=39.8 + 15 = 54.8

NOTE: The results seem reasonable since Fig. 8 b shows Fr to have a magnitude larger
than its components and a direction that is between them.

F

100 5

__._,_,--"'_'1-"
— 15
ﬂﬁ“I*——'
(=1
A
s
150N " il
T .
I !' ._.-' I {Iﬁ
- ;._-' ||
Ly
I,__..- [ .
/ [ 360 - 265)




EX.4. Resolve the horizontal 600-1b force in Fig. 9a into components acting along the u and v axes
and determine the magnitudes of these components.

Figs.9.

600 Ib

Sol. (a) ' (b) (c)

» The parallelogram is constructed by extending a line from the head of the 600-1b force parallel to the v axis
until it intersects the u axis at point B , Fig.9b.

» The arrow from A to B represents Fu .

» Similarly, the line extended from the head of the 600-1b force drawn parallel to the u axis intersects the
v axis at point C, which gives Fv .

» The vector addition using the triangle rule is shown in Fig.9c . The two unknowns are the magnitudes of Fu
and Fv . Applyina the law of sines,

F‘] - F: - F‘R
sinf; sindy sinfg

Fy 600 Ib F 600 Ib
- = - F, =10391Ib = >
sin 120 sin 30° ’ u sin 30 sin 30° ’

F, = 600 Ib

NOTE: The result for Fu shows that sometimes a component can have a greater magnitude than
the resultant.



Ex 5. It is required that the resultant force acting on the eyebolt in Fig.10a be directed along the
positive x axis and that F, have a minimum magnitude. Determine this magnitude, the angle
8, and the corresponding resultant force.

F; =8N

Sol.

(a)

() (c)

» The triangle rule for Fr = F1 + F2 is shown in Fig. 105.

»  Since the magnitudes (lengths) of Fr and F2 are not specified, then F. can actually be any vector that has its
head touching the line of action of F-. Fig. 10c.

» The magnitude of F2 is a minimum or the shortest length when its line of action is perpendicular to the line of
action of Fr, that is, when

o

60 =90
» Since the vector addition now forms the shaded right triangle, the two unknown magnitudes can be obtained by
trigonometry.
Fr = (800N)cos 60° = 400 N

F, = (800N)sin 60° = 693 N



o Vectors F, and Fare rectangular components of F .

o The resultant force is determined from the algebraic sum of its components.

EF}EJ: — EF::
[F,qj}- = E-F} F
4 2 2 Fy"
Fp= W{Fghi + (Fgk
—1 l:'an.:I"; F *
# = tan : *
[FR]x
¥ ¥
F;
‘-“‘“ -¥ F[J.,. — {FH::I_'I-' F_,l.a
F,, | Fie o )
.,,.\ F_-.\_-,_- B (_FH}.:




+¢» Dot Product

o The dot product between two vectors A and B yields
a scalar. If A and B are expressed in Cartesian vector
form, then the dot product is the sum of the products
of their x, y, and z components.

A-B=ARcos#H

— AB, + AB, + AB,

o The dot product can be used to determine the angle
between A and B .

A-B
— '_] —
8 = cos ( 1B )

o The dot product is also used to determine the
projected component of a vector A onto an axiss aa
defined by its unit vector u,.

A, =Acosfu, = (A-uu,

A

.‘il

= [}

g

N

A,=Acos B o,




Ex.6. Determine the xand )y components of Fiand F:acting on the boom shown in Fig.11a .

Sol.

Scalar Notation.

>

By the parallelogram law, Fiis resolved into x and y components, Fig. 11b.

Since Fixacts in the - x direction, and Fiy acts in the +y direction, we have
Fi, =—-200sin30° N = —100 N = 100N «
Fy, =200 cos 300 N=173N=173N 1
The force F:is resolved into its xand )y components, as shown in Fig. 11c.

Obtain the angle u, e.g., 8 = tan‘l(%) :

Determine the magnitudes of the components in the same manner as for F.
using proportional parts of similar triangles, i.e.,

2= 2 Fp= 260 N(32)= 240N and Fz,= 260 N(2) =100 N
Notice

The magnitude of the horizontal component , Fax , was obtained by
multiplying the force magnitude by the ratio of the horizontal leg of the slope
triangle divided by the hypotenuse.

The magnitude of the vertical component , Fzy , was obtained by multiplying
the force magnitude by the ratio of the vertical leg divided by the hypotenuse

~using scalar notation to represent these components, we have

F3,= 240N - F3,=—-100 N=100 N{

Fy = ZIMP N

3"

=200

L}
L

LT
l'_,.l-""
bt

b

F ]'-'::.,. = MWk oo 30T N

Fpz = 200 sin 3F N

()

[ =zr.u|:{_i} M
s 4

Fyp = 260 I:ﬂ:l By

1z

(=

Fig.11

I = 260 M



Ex.7.The link in Fig. 12ais subjected to two forces Fiand F- . Determine the magnitude and direction of the
resultant force.

Sol.l
Scalar Notation.

» First we resolve each force into its xand yycomponents, Fig. 12 b, then
we sum these components algebraically.

Fy=HI0N

S (FR)y=XF, (Fg),=600cos30°N —400sin45 N = 236.8N —

+1 (Fr)y =X F,  (Fgr), =600sin30°N + 400 cos45 N = 582.8N 1

Fo= 40N F, = 600N
i

» The resultant force, shown in Fig. 12 ¢, has a magnitude of |“’ !H jﬁi;t,. "

Fg = \/(236.8 N)2+(582.8 N)2 = 629N =
» From the vector addition, r,

SRZRNA
_ _1 5828N _ o
6 = tan (236.8N)_ 67.9 L4




Ex.8.The end of the boom O in Fig. 13 a is subjected to three concurrent and coplanar forces. Determine the
magnitude and direction of the resultant force.

F, =250N

Sol.

» Each force is resolved into its x and y components, Fig. 13b . Summing the x < h—awoN
components, we have /

+ o
S (FR)x=XFy  (Fg)y=—400N +250sin45 N — 200 (3) N = —383.2N = 383.2 «

» The negative sign indicates that Frxacts to the left, i.e., in the negative x direction, A e, (R
as noted by the small arrow. Obviously, this occurs because Aand ~in Fig.136 > 1>
contribute a greater pull to the left than ~which pulls to the right. Summing the y AN =
components yields
+1 (F)y =5 F,  (Fg)y =250cos45N +200 ()N = 296.8N 1 o

» The resultant force, shown in Fig.13 ¢, has a magnitude of

|
296.8N
Fgp = \/(—383.2 N)2+(296.8 N)2 = 485N \\I
[
- i .

» From the vector addition in Fig. 13¢, the direction angle 9 is  3832N )
_ ~1,296.8, o ©
0 = tan (—383_2)— 37.8
Fig. 13

NOTE: Application of this method is more convenient, compared to using two applications of the parallelogram law, first to add F1 and
F2 then adding F3 to this resultant. 28



Force System Resultants

+» Moment of a Force:

» What is the Moment?

O

When a force is applied to a body it will produce a tendency for the body
to rotate about a point that is not on the line of action of the force.

This tendency to rotate is sometimes called a torque , also called the
moment of a force or simply the moment .

Consider there is a wrench used to unscrew the bolt in Fig. 14 a .

If a force is applied to the handle of the wrench it will tend to turn the bolt
about point O (or the z axis).

The magnitude of the moment is directly proportional to the magnitude of
F and the perpendicular distance or moment arm d.

If the force F is applied at an angle 8 = 90°, as shown in Fig. b, then it
will be more difficult to turn the bolt since the moment armd' = d sin 8
will be smaller than d .

If F is applied along the wrench, Fig. ¢, its moment arm will be zero since
the line of action of F will intersect point O (the z axis). As a result, the
moment of F about O is also zero and no turning can occur.

2

(b3




o The moment Mo about point O , or about an axis passing through O and perpendicular to the

plane, is a vector quantitysince it has a specified magnitude and direction.

o The magnitude of Mo is

Moment arm or
perpendicular

M, =Fd distance

Moment magnitude

N.mor Ib. ft.

o Moment arm is defined as the perpendicular distance between axis of rotation and the line of

action of force.



% Resultant Moment.
o For two-dimensional problems, where all the forces lie within the x—y plane.

o Fig. 15 , the resultant moment (Mx)oabout point O can be determined by finding the
algebraic sum of the moments caused by all the forces in the system.

F,
M')\
—

L Fig. 15

o Positive moments as counterclockwise since they are directed along the positive.
o Clockwise moments will be negative.

o Doing this, the directional sense of each moment can be represented by a plus or minus sign.
o Using this sign convention, the resultant moment in Fig.15 is therefore

<+(MR)O = z Fd; = (Mg)o = F1d; — F,d, + F3d;

o If the numerical result of this sum is a positive scalar, (Mr)o will be a counterclockwise moment .
o if the result is negative,(Mr)o will be a clockwise moment.

4



Ex.1. For each case illustrated in Fig.17, determine the moment of the 100 N
force about point O. l

v

Sol.

o The line of action of each force is extended as a dashed line In
order to establish the moment arm 4.

o Also illustrated is the tendency of rotation of the member as

caused by the force. Furthermore, the orbit of the force about O \(,zrt"'\
Is shown as a colored curl. Thus, o 1 %3{,,:4“ b
| i1t | !
% For fig.17a : Mo = (100 N)(2 m) = 200 N.m ) L 2cosi0n
| 3t |
. X |
% For fig.17b : Mo = (40 Ib)(4 ft + 2 cos 30° ft) = 229 Ib.ft ) o =k = T
a5 5 <
""""""" c_ ]" 601
% For fig.17c : Mo = (60 Ib)(1 sin 45° ft) = 42.4 Ib.ft ) 2w
_____ 1 m .
& For fig.17d : Mo = (7kN)(4 m -1 m) =21.0kN.m o o
AT~

Fig.17



Ex.2. Determine the resultant moment of the four forces acting on the rod shown in Fig.18 about point
0.

Sol. Flgl8 A0 N

Assuming that positive moments act in the +k direction, i.e., counterclockwise, we have

CH+Ma), = ) Fa;

{1 (Mgr)o=-50 N(2 m) + 60 N(0) + 20 N(3 sin 30° m) -40 N(4 m + 3 cos 30° m)

(Mr)o=-334 N.m =334 N.m_J



K/
000

Principle of moments:
principle of moments , which is sometimes referred to as Varignon’s theorem.

It states that the moment of a force about a point is equal to the sum of the
moments of the components of the force about the point .

For example, consider the moments of the force F and two of its components
about point O. Fig. 19.

Since F=F.+F F

The moments

Mo=rXF=rx(Fi+F)=rxF+rXxF



o For two-dimensional problems, Fig. 20 , we can use the principle of moments by resolving
the force into its rectangular components and then determine the moment using a scalar
analysis

Mo = Fxy — FyX
o This method is generally easier than finding the same

moment using

Mo=Fd.

Fig. 20



Ex.3.Determine the moment of the force in Fig.21a about point O.
Sol. 1
The moment arm d'in Fig.21a can be found from trigonometry.
d=(3m)sin 75=2.898 m
Mo=Fd = (5 kN)(2.898 m) = 145kN. m _J

Sol. 11
The x and y components of the force are indicated in Fig. 21b . 4
Considering counterclockwise moments as positive, and
: S —d, = 3 cos 30° m
applying the principle of moments, we have x ‘{ F, = (5 kN) cos 45°

(" M, = F,y—FE,x
o xy Y dy, =3 sin 30°m

= —(5cos45 kN)(3sin30°m) — (5sin45" kN)(3 cos30° m)

\30° F, = (5 kN) sin 45°
1 "X
= —145kN.m = 145kN.m =

4 (b)

Sol. 111
. F, = (5 kN) cos 75°
» The xand y axes can be set parallel and perpendicular to the rod’s == ( )c? A

axis as shown in Fig. 21 c.
*  Here Fxproduces no moment about point O since its line of action
passes through this point. Therefore, o

(:' tM, = —Fydx = —(5sin75kN)(3m)
> F,, = (5 kN) sin 75"

= —145kN.m = 145kN.m )
()

Fig.21



Ex.4. Force F acts at the end of the angle bracket in Fig. 22a. Determine the moment of the force
about point O.

T

0.2 m

Sol.

The force is resolved into its xand ) components, Fig.2256, then | = e
0.4m \
CMO = Fy—Ex 30° F=400N
(a)

C+ Mo = 4005sin30° N(0.2m) — 400 cos 30" N(0.4 m) ‘

= O

T

= —986N.m = 986 N.m ) - | !

& [ . 0.2m
. 400 sin 30° N
'I-—D.-f-tnl
Y 400 cos 30°N
(b)
Fig. 22

10
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» Moment of a Couple:

O Acouple is defined as two parallel forces that have the same magnitude,
but opposite directions, and are separated by a perpendicular distance d ,
Fig.23.

O Since the resultant force is zero, the only effect of a couple is to produce
an actual rotation, or if no movement is possible, there is a tendency of
rotation in a specified direction.

O The moment produced by a couple is called a couple moment. We can
determine its value by finding the sum of the moments of both couple
forces about any arbitrary point.

Q in Fig. 24, position vectors ra and rs are directed from point O to points
A and B lying on the line of action of -F and F . The couple moment
determined about O is therefore

M:TBXF+TAX—F:(T'B—T'A)XF
J However rs=1ra+r or r = Trs— Ta

O sothat
M =1r X F
11

d

Fig.23.

'y 4




U There are two types of parallel forces as discussed as under

» Like parallel forces
When two parallel forces acing in such away that their directions remain same are
called like parallel forces

» Un like parallel forces

When two parallel forces acing in such away that their directions are opposite to each
other called un like parallel forces

ot ot ]

12



M
1 Scalar Formulation. T

o The moment of a couple, M , Fig.25 , is defined as having a magnitude of ir:‘
M = Fd Ez

where

* F is the magnitude of one of the forces . <4

« d is the perpendicular distance or moment arm between the forces. v

o Inall cases, M will act perpendicular to the plane containing these forces. Fig.25

O Vector Formulation.
o The moment of a couple can also be expressed by the vector cross product

Bt -F
M =1r X F F’( 4

o Application of this equation is easily remembered if one thinks of taking
the moments of both forces about a point lying on the line of action of one .
of the forces.

o For example, if moments are taken about point A in Fig. 24 , the moment
of -F is zero about this point, and the moment of F is defined from above _
equation . Therefore, in the formulation r is crossed with the force F to Fig.24

which it is directed.
13



O Equivalent Couples.
If two couples produce a moment with the same magnitude and direction , then these two
couples are equivalent .

O

o As shown in Fig. 26 are equivalent because each couple moment has a magnitude of M = 30
N(0.4m) =40 N(0.3m) =12 N .m.

o Notice that larger forces are required in the second case to create the same turning effect because
the hands are placed closer together.



U Resultant Couple Moment.
o Since couple moments are vectors, their resultant can be determined by vector addition.

MR_ M1+ Mz

(a)

o If more than two couple moments act on the body, we may generalize this concept and write the
vector resultant as

15



Ex.5.Determine the resultant couple moment of the three couples acting on the plate in Fig. 27 .

F, = 200 Ib

Fy=4501b Al

F, = 4501b

Fy=2001b| g =3001b
Sol. -

= As shown the perpendicular distances between each pair of couple forces are d: = 4 ft, a> = 3 ft,
and as=5ft.

= Considering counterclockwise couple moments as positive, we have

{:_ + M: = M; My = —Fidi+ F.d.— F:ds

= —(200 Ib)(4 ft) + (450 Ib)(3 ft) — (300 1b)(5 ft) = —950 Ib.ft = 950 Ib. ft .)

= The negative sign indicates that M<has a clockwise rotational sense.
16



Ex.6.Determine the magnitude and direction of the couple moment acting on the gear in Fig.28a.

Sol.

= The easiest solution requires resolving each force into its
components as shown in Fig.285.

0.2 m

= The couple moment can be determined by summing the moments
of these force components about any point, for example, the center

O of the gear or point A. 30°)
F=0600N
= |f we consider counterclockwise moments as positive, we have (a)
'
Wt M = ZMO;
600 sin 30° N
F=0600N
M = (600cos30°N)(0.2m) — (600sin30°N)(0.2 m) ]

A 600cos30° N

= 439N.m

-

I.r"
or Wt M = ZMA;

M = (600cos30°N)(0.2m) — (600sin30°N)(0.2m)
= 439N.m )

F=600N 600 sin30°N
(b)

This positive result indicates that M has a counterclockwise rotational sense



» The Free-Body Diagram.

O

To apply the equation of equilibrium, we must account for all the known
and unknown forces (3, F = 0) which act on the particle.

The best way to do this is to think of the particle as isolated and “free”
from its surroundings. A drawing that shows the particle with all the forces
that act on it is called a free-body diagram (FBD).

Procedure for Drawing a Free-Body Diagram
To construct a free-body diagram, the following three steps are necessary.
First step: Draw Outlined Shape.

Imagine the particle to be isolated or cut “free” from its surroundings
by drawing its outlined shape.

Second Step: Show All Forces.
Indicate on this sketch all the forces that act on the particle . These forces
can be active forces , which tend to set the particle in motion, or they can
be reactive forces which are the result of the constraints or supports that
tend to prevent motion. To account for all these forces, it may be helpful
to trace around the particle’s boundary, carefully noting each force acting
on it.

Third Step: Identify Each Force.
The forces that are known should be labeled with their proper magnitudes
and directions. Letters are used to represent the magnitudes and
directions of forces that are unknown.

The 5-kg plate is suspended by two straps A
and B. To find the force in each strap we
should consider the free-body diagram of
the plate. As noted, the three forces acting

on it form a concurrent force system.

Second Ste |
—

SOS1)N

< First step

T's & Second Ste

g

Third Step



» Coplanar Force Systems.

©)

O

If a particle is subjected to a system of coplanar forces that lie in the x—) p/ane, as in Fig. 1, then

each force can be resolved into its 7 and j components. !
F,

I
For equilibrium, these forces must sum to produce a zero force resultant, : \ x

YF=0 M Fig. 1

I,

Zin‘l'ZFJ/j:O "
For this vector equation to be satisfied, the resultant force’s X and y components must both be

equal to zero. ,
g YE, =0 YF, =0

At applying each of the two equations of equilibrium, we must account for the sense of direction

of any component by using an algebraic sign which corresponds to the arrowhead direction of the

component along the x or y-axis.

It is important to note that if a force has an unknown magnitude , then the arrowhead sense of the
force on the free-body diagram can be assumed. Then if the solution yields a negative scalar , this

indicates that the sense of the force is opposite to that which was assumed.



Ex.1. Determine the tension in cables BA and BC necessary to support the 60-kg cylinder in Fig.2 a..

Sol.

Free-Body Diagram.

» Due to equilibrium, the weight of the cylinder causes the tension in cable BD to be TBD
=60(9.81) N, Fig.2b.

» The forces in cables BA and BC can be determined by investigating the equilibrium of
ring B . Its free-body diagram is shown in Fig. 2 ¢ . The magnitudes of TA and TC are
unknown, but their directions are known.

(2}

Equations of Equilibrium.

«  Applying the equations of equilibrium along the x and y axes, we have Top =60 (O8N

LEEFO; T, cos45° —(E)TA = 0ureer(1)
60 (951) N
+TXF =0 T.sin45 — (g) T, —60(9.81)N = 0........(2) .
« Equation (1) can be writtenasT 4, = 0.8839T .. Substituting this into Eq. (2 ) yields T, T,
3 A
Te sin45 — <§> 0.8839T . — 60(9.81)N = 0 ﬂ _
¥ Tap= 60 (981) N
. sothat T.= 47566 N = 476 N .
 Substituting this result into either Eq. (1) or Eq. (2 ), we get Fig.2

T, = 420 N



Ex.2. The 200-kg crate in Fig. 3a is suspended using the ropes AB and AC . Each rope can withstand
a maximum force of 10 kN before it breaks. If AB always remains horizontal, determine the
smallest angle 6 to which the crate can be suspended before one of the ropes breaks.

Sol.

Free-Body Diagram
»  We will study the equilibrium of ring A. There are three forces acting on it, Fig. 3 4.

The magnitude of Fb is equal to the weight of the crate, i.e., Fp = 200 (9.81) N = 1962
N <10kN. .’

Equations of Equilibrium. ——|
*  Applying the equations of equilibrium along the xandy axes, -

n r (a)
= ) E.=0;  —Fecosf+ Fyg=10; Fp=—2 1 )
Z X ¢ LS B €= st (1)
Feosint — 1962 N = () (2) Fe
+T X E, = 0;
B Fpy
From Eq. (1), Fc is always greater than Fs since cos 8 <1 . Therefore, rope AC will rf o X
reach the maximum tensile force of 10 kN before rope AB . Substituting Fc = 10 kKN -
into Eq. (2), we get
. 7= 1€ ]
[ 10(10%)N]sin® — 1962N = 0 \ fp= 192K
0 = sin"1(0.1962) = 11.31° 2

Fig. 3.
The force developed in rope AB can be obtained by substituting the values for 6 and Fc

intoEq. (1).
i 10(10%)N = —2—  F, = 9.81kN



* Equilibrium of a Rigid Body

o In this section, we will develop both the necessary and sufficient conditions 5
for the equilibrium of the rigid body in Fig. 4 a . As shown, this body is /
subjected to an external force and couple moment system that is the result of \
the effects of gravitational, electrical, magnetic, or contact forces caused by <
adjacent bodies.

o The internal forces caused by interactions between particles within the body F: \
are not shown in this figure because these forces occur in equal but opposite < 2
collinear pairs and hence will cancel out, a consequence of Newton’s third M, (a)
law.

o The force and couple moment system acting on a body can be reduced to an \(-‘ﬂn)o =0
equivalent resultant force and resultant couple moment at any arbitrary point / Fr=0
O on or off the body.

o Fig. 4 b . If this resultant force and couple moment are both equal to zero,
then the body is said to be in equilibrium . Mathematically, the equilibrium of
a body is expressed as

Fr = ZF =0 (MR)o= ZMO =0 ®

o The first of these equations states that the sum of the forces acting on the body is equal to zero . The second
equation states that the sum of the moments of all the forces in the system about point O , added to all the
couple moments, is equal to zero .

7



» Free-Body Diagrams.

o Successful application of the equations of equilibrium requires a complete specification of all the known and
unknown external forces that act on the body.

o The best way to account for these forces is to draw a free-body diagram.

o This diagram is a sketch of the outlined shape of the body, which represents it as being isolated or “free” from
its surroundings, i.e., a “free body.”

o On this sketch it is necessary to show all the forces and couple moments that the surroundings exert on the
body so that these effects can be accounted for when the equations of equilibrium are applied.

o We need to know the following things before knowing how to draw the F.B.D.

Support Reactions.

o There are various types of reactions that occur at supports and points of contact between bodies subjected to
coplanar force systems.

o Table 1 lists a common types of supports for bodies subjected to coplanar force systems. (In all cases the
angle 6 is assumed to be known.) .



TABLE 1 Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems

Types of Connecticn Rescticon Mumber of Unknowns

(1

VS

Crne unknown. The reaction 15 a tenston force which acis
away from the member in the direction of the cable.

cable

weipghtless link

oe unknown. The reaction 15 a force which acts
perpendicular to the surface at the point of contact.

‘ﬁr
;- 1"-__ ] 3 ] 1
J -_-'—‘EIR [ or ‘}; One nnknown. The reaction 15 a force which acts along
- N the axis of the link.
F F
3} /7 i

raller
(4 s
a-ﬁ-‘____..--"'”* = E One unknown. The reaction is a force which aces
-l.'-'i ~ perpendicular to the surface at the point of contact.
F
rocker
5
— Orne unknown. The reaction 1s a force which aces
a 4 perpendicular to the surface at the point of contact.
smoaih contacling F
surface

4
-y ’gﬂf . % rne unknown. The reaction 15 a force which acts
B F F perpondicular to the slot.

roller or pin in
confinad smooth skt

(7

"‘Hw‘_‘___,--"'
Crne unknown. The reaction 15 a force which aces
_&/ perpendicular to the rod.

member pin connectad
o ocollar on smooth rod




Types of Connection

Reaction

MNumber of Unknowns

(8] '
/

N .
L

smaoth pin or hings

Two unknowns. The reactions are two components of
force, or the magmtude and direction & of the resultant
force. Mote that & and g are not necessanly equal [usually
not, unless the rod shown s a link as 10 (2}].

(9

V4

member fixed connected
1o collar on smooth rod

[
r-'/ M

Two unknowns. The reactions are the couple moment
and the force which acts perpendicular to the rod.

(10

fixed support

FZ"
T_F;
— | O
M

F

v

Three vnknowns. The reactions are the couple moment

and the two force components, or the couple moment and
the magmitude and direction & of the resultant force,




» External and Internal forces.

o Since a rigid body is a composition of particles, both external and internal loadings may act on
it.

o Only the external loading are represented on the free body diagram because the net effect of the
internal forces on the body is zero.

= Weight of a Body.

o When a body is subjected to a gravitational field, then it has a specified weight.

o The weight of the body is represented by a resultant force located at the center of gravity of the
body.

m
W=mXxg,where g = 9.815—2



% Procedure for Analysis

To construct a free-body diagram for a rigid body or any group of bodies considered as a single
system, the following steps should be performed:

= Draw Outlined Shape.

Imagine the body to be /solated or cut “free” from its constraints and connections and draw
(sketch) its outlined shape.

= Show All Forces and Couple Moments.
Identify all the known and unknown external forces and couple moments that act on the body . Those

generally encountered are due to:

* Applied loadings,
« Reactions occurring at the supports or at points of contact with other bodies (see Table 1),
« The weight of the body.

To account for all these effects, it may help to trace over the boundary, carefully noting each force or
couple moment acting on it.

= Identify Each Loading and Give Dimensions.

« The forces and couple moments that are known should be labeled with their proper magnitudes
and directions. Letters are used to represent the magnitudes and direction angles of forces and
couple moments that are unknown.

« Establish an x, y coordinate system so that these unknowns, Ax, Ay, etc., can be identified.

Finally, indicate the dimensions of the body necessary for calculating the moments of forces.



Ex.3. Draw the free-body diagram of the uniform beam shown in Fig. 5 a . The beam has a mass of

100 kg. —2m | 1200 N
Sol. P i
| & m
o The free-body diagram of the beam is shown in Fig. 5b . @)

o Since the support at A is fixed, the wall exerts three reactions on the beam , denoted as Ax, Ay, and
Ma .

o The magnitudes of these reactions are unknown , and their sense has been assumed .

o The weight of the beam, W = 100(9.81) N = 981 N, acts through the beam’s center of gravity G ,
which is 3 m from A since the beam is uniform.

¥ 12060 N
2m -
| .': A — Effcct of applied

[oree acting on beam

Effect of fxed Cl-"! e I
M.,

supgeort acting i Fig. 5b

ckn beam
Effect of pravity (weight)
acling on bopm

3m

i"h



» Equations of Equilibrium
o Two equations which are both necessary and sufficient for the equilibrium of a rigid body, namely,
YF=0and ) M, =0.

o When the body is subjected to a system of forces, which all lie in the x— )y plane, then the forces
can be resolved into their xand y components.

o Consequently, the conditions for equilibrium in two dimensions are

SF=0 , YF=0 ,YM,=0

o Here ) F.and ) F, represent, respectively, the algebraic sums of the x and y components of all the
forces acting on the body, and ), M, represents the algebraic sum of the couple moments and the
moments of all the force components about the z axis, which is perpendicular to the x—y plane and
passes through the arbitrary point O .



¢ Procedure for Analysis
Coplanar force equilibrium problems for a rigid body can be solved using the following procedure.

= Free-Body Diagram.

Establish the X, y coordinate axes in any suitable orientation.

Draw an outlined shape of the body.

Show all the forces and couple moments acting on the body.

Label all the loadings and specify their directions relative to the x or y axis. The sense of a force
or couple moment having an unknown magnitude but known line of action can be assumed .

o Indicate the dimensions of the body necessary for computing the moments of forces.

O O O O

= Equations of Equilibrium.

o Apply the moment equation of equilibrium, ) M, = 0, about a point ( O ) that lies at the
intersection of the lines of action of two unknown forces. In this way, the moments of these
unknowns are zero about O, and a direct solution for the third unknown can be determined.

o When applying the force equilibrium equations, )’ F,, = 0 and ), F,, = 0, orient the x and )y axes
along lines that will provide the simplest resolution of the forces into their xand y components.

o If the solution of the equilibrium equations yields a negative scalar for a force or couple moment
magnitude, this indicates that the sense is opposite to that which was assumed on the free-body
diagram.



Ex.5. Determine the horizontal and vertical components of reaction on the beam caused by the pin at B and the
rocker at A as shown in Fig.7a . Neglect the weight of the beam.

GO0 ™ 2N
Sol. __-1%\"':":]"' - L
. A =l
¢ Free-Body Diagram. sz : 0 S
Identify each of the forces shown on the free-body diagram of the beam, ‘ i ’
Fig. 7 b . (See Example 3 .) For simplicity, the 600-N force is represented ™ *™ 1 - v zm—
by its xand ) components as shown in Fig. 7 4. . H
¥
«» Equations of Equilibrium. 600 sin 45° N e
o Summing forces in the x direction yields 60 cos 45 0Zm .
Al x
- . ' D 2
—>2sz0; 600cos45 N—-B, = 0 =2 B,= 424N T , | X ‘
—2Im— m im—
A, Y B,
LN
o Adirect solution for Ay can be obtained by applying the moment o
equation ); Mz = 0 about point B _ S
¢ +ZMB=0; l . l .
A Fig.7
100 N (2m) + (600sin45 N)(5m) — (600 cos45"N)(0.2m) — A, (7m) = 0 Tam‘ T
Ay, = 319N 39N

()
o Summing forces in the y direction, using this result, gives

+T2Fy =0; 319N —600sin45"N — 100 N — 200 N +B,=0 =———% B,= 405N

NOTE: Remember, the support forces in Fig. 7 b are the result of pins that act on the beam. The opposite forces act on
the pins. For example, Fig. 7 ¢ shows the equilibrium of the pin at A and the rocker.



Ex.6.The cord shown in Fig.8a supports a force of 100 Ib and wraps over the frictionless pulley. Determine the
tension in the cord at C and the horizontal and vertical components of reaction at pin A .

Sol.

)
0‘0

o O

Free-Body Diagram.

The free-body diagrams of the cord and pulley are shown in Fig.8b .

Note that the principle of action, equal but opposite reaction must be carefully
observed when drawing each of these diagrams: the cord exerts an unknown load
distribution p on the pulley at the contact surface, whereas the pulley exerts an equal
but opposite effect on the cord.

For the solution, however, it is simpler to combine the free-body diagrams of the
pulley and this portion of the cord, so that the distributed load becomes internal to
this “system” and is therefore eliminated from the analysis, Fig.8 c .

» Equations of Equilibrium.

Summing moments about point A to eliminate Ax and Ay, Fig. 8c, we have

+ZMA =0, 1001b (0.5 ft) — T(0.5ft) = 0 e T = 100 Ib
o Using this result,

+
—>Z Fo=0, -4, +100 sin30°'/b = 0 ——>» A,=50.0 Ib

+TYFE, =0; A,— 100lb — 100cos 30'lb= 0 =————> A, = 187 1b

0s jl_?\ »ﬁ |
ey t)\
=32

l n

100 I
(a)

10K 1 T

Fig.8

NOTE: From the moment equation, it is seen that the tension remains constant as the cord passes over the pulley.
(This of course is true for any angle 6 at which the cord is directed and for any radius r of the pulley.)



Ex.7.

The member shown 1in Fig. 5—14a 1s pin connccted at A and rests
asainst a smooth support at 2 Deoetermine the hormzontal and vertical

componcnts of rcaction at the pin A

SON-m™m

SOLUTICMN

Free-BEody Diagram. As shown in Fig 5—145, the scaction INg 1s
poerpendicular o the member at 2. Also. horrontal and vertical
components of recaction arce represcnted at Al

Equations of Eguilibrizarm. Summing momoents about A we obtain
a dircct solution for V.

C+3SAf, — 0 —OSO0ON-m — GONCIm) + Ng(O. 7S m) — O
Ng — 200N
Using this result,
B~ S AR AL — 200sin30° N — O
A =— 100N Ars
+rEFy=O: Ay, — 200 cos30"N — 60N = O

A.,. = 235 N 1 27s.



EX-8. The box wrench in Fig. 5-15a is used to tighten the bolt at A. If the
wrench does not turn when the load is applied to the handle, determine
the torque or moment applied to the bolt and the force of the wrench
on the bolt.

=300 mm—{|——400 mm—

SOLUTION (a) N

Free-Body Diagram. The free-body diagram for the wrench is shown
in Fig. 5-15b. Since the bolt acts as a “fixed support,” it exerts force
components A, and A, and a moment M, on the wrench at A.

Equations of Equilibrium.

L3F =0 A, — 52(Z) N + 30cos 60°N = 0

A, = 3500N Ans.
+12E =0; A, — 52({3) N — 30sin 60°N = 0

A, = T40N Ans.

C+3IMy=0; My — [52(55)N] (0.3 m) — (30 sin 60° N)(0.7 m) = 0

My =326N-m Ans.

19



Friction

+» Friction is a force that resists the movement of two contacting surfaces that slide relative to one

another.

o This force always acts tangent to the surface at the points of contact and is directed so as to oppose
the possible or existing motion between the surfaces.
o In this lecture , we will study the effects of dry friction , which is sometimes called Coulomb

friction.

o Dry friction occurs between the contacting surfaces of bodies when there is no lubricating fluid.

The heat generated by the abrasive action of friction can be
noticed when using this grinder to sharpen a metal blade.



» Theory of Dry Friction..

®)

The theory of dry friction can be explained by considering the effects caused
by pulling horizontally on a block of uniform weight W which is resting on a
rough horizontal surface that is non rigid or deformable, Fig.1 a.

The upper portion of the block can be considered rigid.

As shown on the free-body diagram of the block, Fig. 1 b, the floor exerts an
uneven distribution of both normal forceAN,and frictional force AF,along
the contacting surface.

For equilibrium, the normal forces must act upward to balance the block’s
weight W , and the frictional forces act to the left to prevent the applied
force P from moving the block to the right.

Close examination of the contacting surfaces between the floor and block
reveals how these frictional and normal forces develop, Fig.1 c.

It can be seen that many microscopic irregularities exist between the two
surfaces and, as a result, reactive forces AR,, are developed at each point of
contact.

As shown, each reactive force contributes both a frictional component
AF,and a normal componentAN,,.

¢

S




» Equilibrium.

O

The effect of the distributed normal and frictional loadings
Is indicated by their resultants N/ and ~ on the free-body
diagram, Fig. 2.

Notice that /Vacts a distance x to the right of the line of
action of W , Fig.2.

This location, which coincides with the centroid or
geometric center of the normal force distribution in Fig.1
b, is necessary in order to balance the “tipping effect”

caused by P..

For example, if P is applied at a height h from the surface,

Fig. 2, then moment equilibrium about point O is satisfied

ifo=Phorx=P—h.
w

W

|/ 2=pa /2
II-
———

1.
X | ny

Resultant MNormal
and Frictional Forces

Fig. 2




>

®)

Impending Motion.

In cases where the surfaces of contact are rather “slippery,” the
frictional force F may not be great enough to balance P , and
consequently the block will tend to slip.

As P is slowly increased, F correspondingly increases until it attains a
certain maximum value Fs, called the limiting static frictional force ,
Fig. 3.

When this value is reached, the block is in unstable equilibrium since
any further increase in P will cause the block to move.

limiting static frictional force Fs is directly proportional to the resultant
normal force N . Expressed mathematically,

F, = pN

where the constant of proportionality, u,is called the coefficient of
static friction .

_I_|£_‘_|f-"*.t"ll"l-_l_|
Angle of static friction ¢, = tan v ) = tan | Ty ) =t p,

Typical values for p, are given in Table 1.

W

Fig. 3.

Impending
maotion

Contact
Materials

Coefficient of
Static Friction ()

Metal on ice

0.03-0.05

Wood on wood

0.30-0.70

Leather on wood

0.20-0.50

Leather on metal

0.30-0.60

Aluminum on
aluminum

1.10-1.70



Motion.

If the magnitude of P acting on the block is increased so that it becomes
slightly greater than £s, the frictional force at the contacting surface will
drop to a smaller value F%, called the kinetic frictional force .

The block will begin to slide with increasing speed, Fig.4a . As this occurs,
the block will “ride” on top of these peaks at the points of contact, as shown
in Fig.4b . The continued breakdown of the surface is the dominant
mechanism creating kinetic friction.

The magnitude of the kinetic friction force is directly proportional to the
magnitude of the resultant normal force, expressed mathematically as

Fr = mN

U, 1s called the coefficient of kinetic friction . Typical values for u; are
approximately 25 percent smaller than those listed in Tablelfor .

. F, N
Angle of kinetic friction ¢, = mn‘](ﬁ) = tan_l(#N ) = tan~"

By comparison, b, = dby.

W
—= Muotion
Ii
—




» Procedure for Analysis

Equilibrium problems involving dry friction can be solved using the following procedure.

+ Free-Body Diagrams.

o Draw the necessary free-body diagrams, and unless it is stated in the problem that impending motion or
slipping occurs, always show the frictional forces as unknowns (i.e., do not assume F= uN).

o Determine the number of unknowns and compare this with the number of available equilibrium equations.

o  If there are more unknowns than equations of equilibrium, it will be necessary to apply the frictional equation
at some, if not all, points of contact to obtain the extra equations needed for a complete solution.

o If the equation ~= u/Vis to be used, it will be necessary to show F acting in the correct sense of direction on

the free-body diagram.

% Equations of Equilibrium and Friction.
o Apply the equations of equilibrium and the necessary frictional equations (or conditional equations if tipping is

possible) and solve for the unknowns.



Ex.1. The uniform crate shown in Fig.5a has a mass of 20 kg. If a
force P = 80 N is applied to the crate, determine if it
remains in equilibrium. The coefficient of static friction is
us = 0.3.

Sol.

+ Free-Body Diagram.

* Asshown in Fig.5b , the resultant normal force NC must act a distance x
from the crate’s center line in order to counteract the tipping effect caused # Z 80N
by P.

(a)
1962 N

|—04m 0.4 m—

 There are three unknowns, F , NC, and x , which can be determined
strictly from the three equations of equilibrium.

A==

« Equations of Equilibrium.
iZszo; 80cos30N —F = 0 - F =69.3N
+7 ZFy = 0;—-80sin30'N + NC —196.2N = 0 - NC = 236.2N
i +2M0 = 0; 80sin30°N(0.4m)— 80cos30°N(0.2m)+ NC(x) = 0->x =

= Since x is negative it indicates the resultant normal force acts (slightly) to the /feft

tipping will occur since x < 0.4 m.

(b)

Fig.5
—0.00908 m = —9.08 mm

of the crate’s center line. No

= Also, the maximum frictional force which can be developed at the surface of contact is F,,, = usNC

= 0.3(236.2N) = 70.9 N.Since F=69.3 N < 70.9 N, the crate will not slip, although it is very close to doing

SO.



Ex.2. It is observed that when the bed of the dump truck is raised to an angle of
6 = 25° the vending machines will begin to slide off the bed, Fig. 6 a .
Determine the static coefficient of friction between a vending machine and
the surface of the truckbed.

Sol.

An idealized model of a vending machine resting on the truckbed is shown in
Fig. 6b . The dimensions have been measured and the center of gravity has
been located. We will assume that the vending machine weighs W .

s Free-Body Diagram.
As shown in Fig. 6¢ , the dimension x is used to locate the position of the resultant
normal force N . There are four unknowns, N, F ,u., and x .

+ Equations of Equilibrium.

+NIF, = 0; Wsin25° — F = 0 (1)
+/3F, = 0 N — Wcos25° = 0 2)
C+3Mg = 0; —Wsin25°(2.5 ft) + Wcos 25°(x) = 0 (3) (b)

Since slipping impends at 6 = 25°, using Egs. 1 and 2, we have
F, = p.N; Wsin 25° = p (W cos 25°)
., = tan 25° = 0.466

from Eqg. 3, we find x = 1.17 ft. Since 1.17 ft < 1.5 ft, indeed the vending
machine will slip before it can tip as observed in Fig. 6 a .




Ex.3. The uniform 10-kg ladder in Fig.7 a rests against the smooth wall at B , and
the end A rests on the rough horizontal plane for which the coefficient of
static friction isug; = 0.3 . Determine the angle of inclination 6 of the ladder
and the normal reaction at B if the ladder is on the verge of slipping.

Sol.
% Free-Body Diagram.

As shown on the free-body diagram, Fig.7b , the frictional force FA must act to
the right since impending motion at A is to the left.

% Equations of Equilibrium and Friction.
Since the ladder is on the verge of slipping, then F, = usN,= 0.3N4. By inspection,
N, can be obtained directly.

+13F, = 0; Ny — 10081)N =0 Ny=098.1N

o+

Using this result, F; = 0.3(98.1 N} = 20.43 N. Now Ny can be found.
L EF =0 2043IN - Ny =10
Ny =2043N = 294N

Finally, the angle 6 can be determined by summing moments about point A.

C+EMy =0, (2943 N)(d m) sin§ — [10(9.81) NJ(2m)cos fd = 0

sin &

= tan 8 = 1.6667

cos
# = 59.04° = 50.°

B lll

|

4dm {
|
|

/- . I'q'|| _.‘__/'I

(a)
Ng
10(9.81) N
(4 m)sin &

(2 m) cosf



Center of Gravity and Centroid

s Center of Gravity, Center of Mass, and the Centroid of a Body.

a

O

Center of Gravity.

A body is composed of an infinite number of particles of differential size, and so if
the body is located within a gravitational field, then each of these particles will
have a weight dW , Fig. 1 a.

These weights will form an approximately parallel force system, and the resultant
of this system is the total weight of the body, which passes through a single point
called the center of gravity, G , Fig. 1 b.

The weight of the body is the sum of the weights of all of its particles, that is

+lFr =YF, . W=de
The location of the center of gravity, measured from the y axis, is determined by
equating the moment of I/ about the y axis, Fig.1b , to the sum of the moments of
the weights of the particles about this same axis. If dWW is located at point ( X, V ,
Z), Fig.1 a, then
(Mp), = XM, XW=[x%dw

Similarly, if moments are summed about the x axis,

(Mp)x = X My yW= 7 dw

(b)

Fig. 1.



o Finally, imagine that the body is fixed within the coordinate
system and this system is rotated 90° about the y axis, Fig.
2. Then the sum of the moments about the y axis gives.

(Mg)y = 2 M, ZW=[2zdw

o Therefore, the location of the center of gravity ¢ with
respect to the x , y , z axes becomes

/ X dW / ¥ W / T dW

I=—F— ¥Y=—7F— I="—"F— e (D)
f dW / dW f AW Fig. 2.

Here
X,y ,Z arethe coordinates of the center of gravity G , Fig.1b .
X, V, Z are the coordinates of each particle in the body, Fig.1 a .



O Center of Mass of a Body.

o In order to study the dynamic response or accelerated motion of a body, it
becomes important to locate the body’s center of mass C,, , Fig.3 .

o This location can be determined by substituting diW = g dm into Egs. (1)

. Since g is constant, it cancels out, and so

/ X dm f ¥ dm f 7 dm
I="—F— ¥F="7F— I="7F— |....(2
fdm ff!m

f clim
o If the body in Fig. 4 is made from a homogeneous material, then its density

O Centroid of a Volume.

p will be constant.
o Therefore, a differential element of volume dV has a mass dm = p dV.
o Substituting this into Egs. 2 and canceling out p , we obtain formulas that

locate the centroid C or geometric center of the body; namely

/T.:ﬂf’ /?ﬁfﬂf’ /ffﬂf’
T = —I 1"-I UM = —l FI T = —l v
dl /fﬂf’ fﬂ"is"

[or 7T W

L

L=

dn s
/
¥
¢ 1 /
Fig. 3.
F- - C
y— rdv
Fig. 4.



O Centroid of an Area.
o If an area lies in the x—y plane and is bounded by the curve y = f (x), as
shown in Fig.5a, then its centroid will be in this plane and can be

determined from integrals similar to Egs. 3., namely,

JI( T oA JI( V A
— .'J'I — l'1.
X T o=

f— —— "l_ —_— ————————————————————
J||(.-_’.!'.4 }'fﬂ'ﬂ ( )
A A

o These integrals can be evaluated by performing a single integration if we use a

rectangular strip for the differential area element.

o For example, if a vertical strip is used, Fig.5 b, the area of the element is

dA = ydx,and its centroid is located at X = X and y = %

o If we consider a horizontal strip, Fig.5c, then dA = x dy, and its centroid

~ X ~
is located at X = > andy =Y.

[P R S,

Ay

Fig. 5.



Centroid of a Line.

If a line segment (or rod) lies within the x-y plane and it can be described by a
thincurve y = f (x), Fig.6a, then its centroid is determined from

fﬁ:”‘ dl. f? il
T="t—— v=2——| . ...(5
f-_’é'f_- ffﬂ_-
L L

Here, the length of the differential element is given by the Pythagorean theorem,

dL = \/(dx)? +(dy)?

which can also be written in the form

dx™y: o, &N,
ey 2
= 1 + = ok
(1"- (ﬂ’.r) ) *

or

_ (J(%) L )d}, Fig.6a.



For example, consider the rod in Fig.6b , defined by y = 2x2.

d
The length of the element is dL = \/ 1 +(d_2c])2 dx

d
Since 2y - 4x
dx

Then dL = /1 +(4x)? dx.

The centroid for this element is located at 2m
X=x Y
y=y

(b)

Fig.6b.



¢ Procedure for Analysis

The center of gravity or centroid of an object or shape can be determined by single integrations using the following
procedure.

Q Differential Element.
o Select an appropriate coordinate system, specify the coordinate axes, and then choose a differential element for
integration.
o  For lines the element is represented by a differential line segment of length dL .
o For areas the element is generally a rectangle of area dA , having a finite length and differential width.
o For volumes the element can be a circular disk of volume dV , having a finite radius and differential thickness.
o Locate the element so that it touches the arbitrary point ( x,y, z ) on the curve that defines the boundary of the

shape.

U Size and Moment Arms.
o Express the length dL , area dA , or volume dV of the element in terms of the coordinates describing the curve.

o Express the moment arms X, y, Z for the centroid or center of gravity of the element in terms of the coordinates
describing the curve.

O Integrations.

o Substitute the formulations for X, y, Z and dL,dA ,or dV into the appropriate equations ( Egs.1 through 5).

o Express the function in the integrand in terms of the same variable as the differential thickness of the element.

o The limits of the integral are defined from the two extreme locations of the element’s differential thickness, so

that when the elements are “summed” or the integration performed, the entire region is covered.



Ex.1. Determine the distance Y measured from the x axis to the centroid of the area of the triangle shown in
Fig.7.

Sol. ;

Q Differential Element.

o Consider a rectangular element having a thickness dy, and located in an

arbitrary position so that it intersects the boundary at ( x,y ), Fig.7.

Area and Moment Arms.

°© O

The area of the element is dA = x dy :% (h—y)dy and its centroid |

located a distance Y = 'y from the x axis.

O Integrations.
Applying the second of Egs. 4 and integrating with respect to y yields Fig.7

o

f JH_'“"'“ TTLI

o NOTE: This result is valid for any shape of triangle. It states that the centroid
Is located at one-third the height, measured from the base of the triangle.



Ex.2. Locate the centroid of the area shown in Fig. 8a .

Sol.l.
O Differential Element.

o Adifferential element of thickness dx is shown in Fig.8a .
o The element intersects the curve at the arbitrary point ( x,y ), and so it has a

height y .

O Area and Moment Arms.

o The area of the element is dA = y dx, and its centroid is located at X = X,y =

U Integrations.

o Applying Egs. 4 and integrating with respect to x yields

I m Im
fr dA f 1y dx Ty
A EI 2510}
Il m ] m ﬂ 333
ffm [ v dx f 2 dx

f ¥ dA f (v/20 dx f (x* /20" dx
4 0 _Jo

?: =

0.100
Lm B L'm ~ 0333
f dA [ v dx / + dx
A 0 0

= 0.73m

= 03 m

SIS




Sol.11.

Q Differential Element.

The differential element of thickness dy is shown in Fig.8b. The element
intersects the curve at the arbitrary point ( x,y ), and so it has a length
(1 — x).

O Area and Moment Arms.

The area of the element is dA = (1 — x) dy, and its centroid is located at

_ "1 — x 1| +x ..
.E=.1‘—( - \|= . ¥ =¥
! LA s ) ’

O

O

O Integrations.

o Applying Egs.4 and integrating with respect to y yields

Il m 1 I m
T dA 1 + x3/211 — x)dy - | —yidy
Bk fu R L I AU LR |
= = T = ™ =ﬂ333=11?5m X 1 —xp
fﬁ!'ﬁ. / (1 — x)ey f (1 _ﬁ}{h 1 m
'} (b}

I m I'm
| — F R R Flg 8b.
f f 3 o A Gy 0100

= =03m

Lm L 0.333
f‘fm f (1 — x}dy / (1 — Viddy
0

o NOTE: This result is valid for any shape of triangle. It states that the centroid
Is located at one-third the height, measured from the base of the triangle.
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Ex 4. Locale the ¥ centroid for the paraboloid of revolution, shown in
" Fg 9-14.

100 mm

‘<

—100 mm —

Fig. 9-14
SOLUTION

Differential Element. An clement having the shape of a thin disk is
chosen. This element has a thickness dy, it intersects the gencrating
curve at the arbitrary point (0, y, 2), and so its radius is r = z.

Volume and Moment Arm. The volume of the clement is
dV = (7) dv. and its centroid is located at ¥ = y.

Integration. Applying the second of Eqs 9-3 and integrating with
respect to y yields

10 om

100 mm
f ¥av f W@l dy 100w / ¥ dy
1] i 0

Y- : s 100 mm - 190 mm
f ax f (wf)dy 1007 f y dy
¥ ) o

= 66.7 mm Auns.



Ex5 Determine the location of the center of mass of the cylinder shown
7 in Fig., 9—15 if its density varies directly with the distance from its base,
i.e.. p = 200z kg /m°.

z

Fig. 915
SOLUTICON
For reasons of material symmetry,
x=%=0 ARs.

Differential Element. A disk element of radius 0.5 m and thickness
dz is chosen for integration, Fig. 9—15, since the density of rhe entire
element is constant for a given value of z. The element is located along

the z axis at the arbitrary point (0,0, 2).

Volume and Moment Arm. The wolume of the element is
dV = a0.5? dz. and its centroid is located at T = z.

Integrations. Using the third of Eqgs. 92 with dm = pdV and
integrating with respect to z, noting that o = 200z, we have

Im
f ZpdV f 2(2002) [ 7(0.5)" dz |
L I

I m
J/; pdV f (2002)7(0.5)2 d=
0

|

= ——— = 0.667m Ans,



s Composite Bodies.

o A composite body consists of a series of connected “simpler” shaped bodies, which may be rectangular,
triangular, semicircular, etc.

o Such a body can often be sectioned or divided into its composite parts and, provided the weight and location of
the center of gravity of each of these parts are known, we can then eliminate the need for integration to determine

the center of gravity for the entire body.

IW _ EYW _ XTW
X = : :

=W =W

Here
X, }7 , Z represent the coordinates of the center of gravity G of the composite body.

X, }7, Z represent the coordinates of the center of gravity of each composite part of the body.
Xw Is the sum of the weights of all the composite parts of the body, or simply the total weight of the body.

o When the body has a constant density or specific weight , the center of gravity coincides with the centroid of the
body. The centroid for composite lines, areas, and volumes can be found using relations analogous to EQs.6;
o the W s arereplaced by L’s,A’s,and V ’s, respectively. Centroids for common shapes of lines, areas, shells, and

volumes that often make up a composite body are given in the table.

14



¢ Procedure for Analysis

The location of the center of gravity of a body or the centroid of a composite geometrical object
represented by a line, area, or volume can be determined using the following procedure.

L Composite Parts.

o Using a sketch, divide the body or object into a finite number of composite parts that have simpler
shapes.

o If a composite body has a /ole , or a geometric region having no material, then consider the
composite body without the hole and consider the hole as an additional composite part having
negative weight or size.

O Moment Arms.

o Establish the coordinate axes on the sketch and determine the coordinates X, y, Z of the center of
gravity or centroid of each part.

d Summations.

o Determine X, Yy, Z by applying the center of gravity equations, Egs.6. , or the analogous
centroid equations.

o If an object is symmetrical about an axis, the centroid of the object lies on this axis.

o |If desired, the calculations can be arranged in tabular form, as indicated in the following
examples.

15



Ex.6. Locate the centroid of the wire shown in Fig. 12 a .

(b)

Sol.
o Composite Parts. The wire is divided into three segments as shown in Fig.12b .

o Moment Arms. The location of the centroid for each segment is determined and indicated in the figure. In
particular, the centroid of segment 1 is determined either by integration or by using the table on the inside back
cover.

o Summations. For convenience, the calculations can be tabulated as follows:

Segment L {mm}) T(mm) ¥F(mm) Z (mm) T (mm?) ¥L (mm®) 7L (mm°)
1 ey = 188.5 Ll —38.2 0 11 310 — 7200 1]
s 40 (i 20 0 ] B00 1]
3 20 (i 40 — 10 ] B00 — 200
3L = 2485 =IL = 11 310 EVL = —5600 EIL = —200
o Thus, _ EFL 11310 i
X = 57 =S TR = 455 mum
=i, — 5000
Y = .- — — —22__
: =L 2485 -
=zl — _
= =S = —([IL.BDS mm

ZL 248.5



Ex.7. Locate the centroid of the plate area shown in Fig. 13 a .

Sol.

O

Composite Parts. The plate is divided into three segments as shown in Fig. 13 b .
Here the area of the small rectangle 3 is considered “negative” since it must be

subtracted from the larger one 2 .

Moment Arms. The centroid of each segment is located as indicated in the figure.

Note that the X coordinates of 2 and 3 are negative .

Summations. Taking the data from Fig. 13 b , the calculations are tabulated as

p—

follows:
Sepment A (fth TRy ¥ TA (7t YA (FtY)
1 -}[3}[3] = 4.5 1 1 4.5 4.5
2 (I3 =10 —1.5 15 —135 13.5
3 —(201) = -2 25 Z 3 —4
A =115 Fid=—-4 E¥A =14
Thus,
T xA —4
X I = —(0.3438 fi
2A 115
g2 _ B g
. 2.4 11.5

17
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Geometric Properties of Line and Area Elements

Centroid Location

L=28r
F.E .
Y
T rsing
[+

Circular arc segment

Centroid Location

L—-.J"

INErLAN

Charter and semucircle arcs

Chearter circle area

F—a— ~A=lhia+ &)
AN
| B IT (Eu:l-l-fl

Trapezoidal area

I
...H_1

dr
kg

=
x

Semicircular area




Crircular area

f,.-.-‘;:bh

— X




Q

Q

Moment of Inertia

Quantities called moments of inertia arise repeatedly in analyses of engineering problems.
Moments of inertia of areas are used in the study of distributed forces and in calculating
deflections of beams.

The moment exerted by the pressure on a submerged flat plate can be expressed in terms of the
moment of inertia of the plate’s area.

In dynamics, mass moments of inertia are used in calculating the rotational motions of objects.
We show how to calculate the moments of inertia of simple areas and objects and then use results
called parallel-axis theorems to calculate moments of inertia of more complex areas and

objects.



s Definitions

O Consider an area A in the x — y plane (Fig.1a). Four moments of
inertia of A are defined:

¥
1. Moment of inertia about the x axis: o (a)
‘-.; A .- ™,
5 P ~
‘fx — /‘}!L d:’L ....... (1) l:-" 4
A e
Where: y is the y coordinate of the differential element of area dA (Fig.1.b). v
= This moment of inertia is sometimes expressed in terms of the radius
of gyration about the x axis, k, , which is defined by
I.=k2A ... 2) !
2. Moment of inertia about the y axis: | x
I, = f;.,-? dA, 3) Fig.1.
A Jrrrre (a) Anarea Ain the x—y plane.
Where: x is the x coordinate of the element dA (Fig.1.b). (b) A differential element of A.

» The radius of gyration about the y axis, ky, is defined by

I, = ky A.| ... (4)




3. Product of inertia:

Iy = / XydA. | L (5)
A

4. Polar moment of inertia:

Where: r is the radial distance from the origin of the coordinate system to dA (Fig.1.b).

= The radius of gyration about the origin, kg, is defined by

= The polar moment of inertia is equal to the sum of the moments of inertia about the x and y axes:

Jp = /rzdﬂ = f{f +x)dA=1I,+ I,
A A




Substituting the expressions for the moments of inertia in terms of the radii of gyration into this
equation, we obtain

ki = k2 + k2.

The dimensions of the moments of inertia of an area are (length)* and
the radii of gyration have dimensions of length.

Notice that the definitions of the moments of inertia I, I,,and J, and the |

radii of gyration imply that they have positive values for any area. They —
cannot be negative or zero. -

If an area A is symmetric about the x axis, for each element dA with LH_H_ dAF (x,-))
coordinates (x,y ), there is a corresponding element dA with T
coordinates(x,—y) as shown in Fig.2. Fig.2.

The contributions of these two elements to the product of inertial,, of the area cancel:xydA
+ (—xy)dA = 0 This means that the product of inertia of the area is zero.

The same kind of argument can be used for an area that is symmetric about the y axis.

= [If an area is symmetric about either
the x axis or the y axis, its product

of inertia is zero.




*

D)

U0

Parallel-Axis Theorem for an Area y ¥

The parallel-axis theorem can be used to find the moment of inertia of an area
about any axis that is parallel to an axis passing through the centroid and about
which the moment of inertia is known.

To develop this theorem, we will consider finding the moment of inertia of the d.
shaded area shown in Fig.3. about the x axis.

To start, we choose a differential element dA located at an arbitrary distance y’

Fig.3.

from the centroidal x’axis. £ x

If the distance between the parallel x and x’ axes is d,, , then the moment of inertia of dA about the x axis is
dl, = (y' + d,)?dA. For the entire area

I, = f@'+d}.)3dA= fy'ldAJrzdj.fy’dAer;%fdA
A A A A

The first integral represents the moment of inertia of the area about the centroidal axiij,.

The second integral is zero since the x'axis passes through the area’s centroid C; ie., [y'dA
=y' [dA = 0since y' = 0.

Since the third integral represents the total area A , the final result is therefore

‘rx = ‘_{.1'“ + Ad%
A similar expression can be written for I, ; i.e.,

L =1, +Ad; | ... ()



O And finally, for the polar moment of inertia, since TC = Tx, + Tyrand d* = d}: + df, we have

Jo=Jc+ Ad>| ... (10)

O The form of each of these three equations states that the moment of inertia for an area about an
axis is equal to its moment of inertia about a parallel axis passing through the area’s centroid

plus the product of the area and the square of the perpendicular distance between the axes .



¢ Procedure for Analysis

In most cases the moment of inertia can be determined using a single integration. The following procedure shows

two ways in which this can be done.

» If the curve defining the boundary of the area is expressed as y =

element such that it has a finite length and differential width.

s V

J
*

Case 1.

Orient the element so that its length is parallel to the axis about
which the moment of inertia is computed. This situation occurs
when the rectangular element shown in Fig. 4a is used to
determine /, for the area. Here the entire element is at a distance y
from the x axis since it has a thickness dy. Thus I, = f y dA.To find
Iy, the element is oriented as shown in Fig. 4b . This element lies
at the same distance x from the yaxisso that I, = f x dA

+» Case 2.

The length of the element can be oriented perpendicular to the
axis about which the moment of inertia is computed; however,
Eq.1and3does not apply since all points on the element will not lie
at the same moment-arm distance from the axis. For example, if
the rectangular element in Fig. 4a  is used to determine [, it
will first be necessary to calculate the moment of inertia of the
element about an axis parallel to the y axis that passes through
the element’s centroid, and then determine the moment of inertia
of the element about the y axis using the parallel-axis theorem.
Integration of this result will yield 7...

TR )

dy

f(x), then select a rectangular differential

The element should be located so that it intersects the curve at the arbitrary point ( x,y ).

= ¥
(a) '
L x ‘_‘
NS
¥ =fix)
X dA
x
I
(b)

Fig.4.



% Moments of Inertia for Composite Areas

U A composite area consists of a series of connected “simpler” parts or shapes, such as rectangles, triangles, and
circles. Provided the moment of inertia of each of these parts is known or can be determined about a common
axis, then the moment of inertia for the composite area about this axis equals the algebraic sum of the moments
of inertia of all its parts.

The moment of inertia for a composite area about a reference axis
can be determined using the following procedure.

Composite Parts.

® Using a sketch, divide the area into its composite parts and
indicate the perpendicular distance from the centroid of each
part to the reference axis.

Parallel-Axis Theorem.

* [If the centroidal axis for each part does not coincide with the
reference axis, the parallel-axis theorem, I = T + Ad”, should be
used to determine the moment of inertia of the part about the
reference axis. For the calculation of 7, use the table on the inside
back cover.

Summation.

®* The moment of inertia of the entire area about the reference axis
is determined by summing the results of its composite parts about
this axis.

* [f a composite part has a “hole”, its moment of inertia is found by
“subtracting” the moment of inertia of the hole from the moment
of inertia of the entire part including the hole.




Ex.1. Determine the moment of inertia for the rectangular area shown in Fig. 5. with respect to (a) the centroidal x’
axis, (b) the axis x; passing through the base of the rectangle, and (c) the pole or z" axis perpendicular to
the x" — y'plane and passing through the centroid C .

Sol. ¥
Part (a). The differential element shown in Fig.35 is chosen for o
integration. Because of its location and orientation, the entire elemens dy’
is at a distance ¥* from the x* axis. Here it is necessary to integrate from . L
¥ = —h/2toy" = k/2 Since dd = b dy’, then ) =
ik
B2 hy2 —— - | x
Ir = f yidA = f ¥y dy'y = b f ¥ v’ c
A —hy2 —hy2 ]
2
T = %wﬁ |

Part (b). The moment of inertia about an axis passing through the |
base of the rectangle can be obtained by using the above result of |
part (a) and applving the parallel-axis theorem

[ |

Fig.5.

I, = Iy + Ad;

Lb.’rj' + Mz("—’f = L.wﬁ
12 2) 3

Part {c). Toobtain the polar moment of inertia about point C, we
must first obtain [, which may be found by interchanging the
dimensions & and /i in the result of part (a), i.a.,

= 1
Ty = E.sz—"

the polar moment of inertia abowt O is therefore

- 1
T =Ty + T, = [ bh0 + b7



Ex.2. Determine the moment of inertia for the shaded area shown in Fig.6. a about the x axis.

Sol. (Case 1)

A differantial element of area that is paraffe! 1o the x axis, as shown in
Fig.-Aa, is chosen for integcration. 5ince this element has a thickneass
oy ana intersects the curve at the arbdtrary poinf (x, v). ils area is
dd = (1 — x) dyv. Furthermore, the element lies at the same distance y
from the x axis. Hence, integrating with respect to y. from y = O Lo
¥ = 204 mm, yields

20 mm
J'_t=f_1,r‘1r:|.’.-‘1= f ¥ 10D — x) dy
A a

200 mm Z 2K mm A
f =E(Jﬂﬂ—}—)d}== f (lc-:h-i—}—:]a'y
[ = 100 a : 400

= 1O07( 10 mm*
Sol. (Case 2)
A differential element parafled to the v axis, as shown in Fig..ab s

chosen for integration. It intersects the curve at the arbitrary poing
(x, ¥}. Im this casa, all points of the element do Aot lie at the samea
distance from the x axis, and therefore the parallel-axis theorem must
be used to determine the smomernt of inerfia of the efenmrent with respect
to this axis. For a rectangle having a base & and height fi, the moment
of inertia abouwut its centroidal axis has been determined in part (a) of

Example 1. There it was found that f,. = T]fb.fr3_ For the differential
clement shown in Fig. a5, b = drandh = v, and thus &df,- = ﬁﬂ’_r}-j_
Since the centroid of the element is ¥ = /2 from the x axis. the

maoment of inertia of the elemeaent aboot this axis is

= o 1 P I 1
diy = diy + dAF" = Sdry” + vdx (%jl = 3 dx

(This result can also be concluded from part (B) of Examplall.)
Inteporating with respect o ¥, from ¥ = O to xy = 100 mm. yields

14 mm 1 1 mm L
I = Jlrmr; - J,r‘ —v iy = J,r‘ E{-iﬂﬂ:rf"'z elx
a 3 u]

= 107 105 mm?

10} mm

{aj

—x
- 2
|
-—.1'—-| |-—r.|"|:
100 mm
(b}
Fig.6.



Ex.3. Determine the moment of inertia with respect to the x axis for the
circular arca shown in Fag. 7. -

I —_— |
o AN,
7 \F
l

fa)

SOLUTICN |1 (CASE 1)
Using the differential element shown in Fig. T, since d4 = Zy dly,

we have
f,=f}—'d.4=f}'1i1t}d}'
A A

f}—'{l"-..-"al — ) dy = e Ans

4

SOLUTICN I (CASE Z)

When the differential element shown 1n Fig. -7h- 15 chosen, the
ceniroad for the clement happens o e on the x axs, and since
I = bk for a rectangle, we have

T )
x = pur(2y]
2

— Jdr
E}

Integrating with respect to x vields

T3
:I — f %{'ﬂ: — -r-.":lllllulﬂ' = % .."‘Lﬂ'ﬁ_
—a

L)

MOTE: By companson, Solutton 1 requires much less computation.

Therelore, if an integral using a particular element appears difficult 1o Fig. 7
cvaluate, try =olving the problem w=ing an element onented 1o the

other direction.



Ex.4. Determine the moment of inertia of the area shown in Fig. 8 gaabout the x axis.

Sol.

Composite Parts. The area can be obtained by subtracting the circle |_me_|T
from the rectangle shown in Fig.8 4. The centroid =) vslmm
of each area is located in the figure. ““@ [

5 mm
L.

Parallel-Axis Theorem. The moments of inertia about the x axis are
determined using the parallel-axis theorem

(@)

and the geometric properties formulae for

circular and rectangular areas I, = inr‘*,

1
I, = —bh®.
Circle

I =Ty + Adj
= %mm“ + w(25%75" = 11.4(10°) mm*

Rectangle

I, = Ig + Ady

Surmmation.

|
Eummjml + (100N 150075 = 112.5(105) mm*

The moment of inertia for the area = therefore

I, = —1L4{105F) + 112.5{10%

101{ 10°} mm*

(bl



Ex.5.

Determine the momeni=s of inertia for the cross-sechional area of the
member shown in Fig. 9 about the x and y centrindal axes.

SOLUTION

Composite Parts. The cross section can be subdiaded into the three
rectangular arcas A, B, and I? shown in Fig_ Q. For the calculation,
the centroid of cach of the=se rectangles 15 located in the figure.

Parallel-Axis Theorem. From the table on the inside back cover, or
Example 101, the moment of mcrtia of & rectangle about its centrondal
axts is J = 5 bk’ Hence, using the parallel-axis theorem for rectangles A
and [}, the calculations are as follows:

Rectangles A and [
I =T, + Adf = Il—zum:.tzm:.—‘ + (1O SO0 2000*
= 1.425(10*) mm*
I = & + Adf = Il—zt:lm:num:ﬁ + (3000 2500"
1.9 10%) mm*

= Il—ltﬂm:.nm:r" = 0.05(10%) mm*
I, = II—I[]I]])IEI!]}"’ = 1B 10" mm*

Summation. The moments of mmertta for the entre cross secltron
are thus
I = 2[1.425(10%] + 0.05(10%)
2.90(10%) mm*
I, = A1L9N107)] + 1.80(10%)
= 5.60010%) mm*



Semicircular area

Area Moment of Inertia

I = 4!’4{3—’5 sin 2)0

}1r [9+ sin2)6

S
Il
=
|

S

]
I
==
3

T

Circular area

y  ,A=bh

i X

Triangular area

I = {mrt
[ =inrt
y = g tr
I = {5bh*
I, = {5hb3
I.= %bh’



Principles of Dynamics

 Dynamics. Which deals with the accelerated motion of a body.

O Dynamics has two distinct parts:

1. Kinematics, Which treats only the geometric aspects of the motion, i.e. study of

motion without reference to the forces which cause motion.
2. Kinetics, Kinetics, which is the analysis of the forces causing the motion, i.e.

relates to the action of forces on bodies to their resulting motions.

O The principles of dynamics developed when it was possible to make an accurate

measurement of time.



L There are many problems in engineering whose solutions require application of the
principles of dynamics.
o Structural design of any vehicle, such as an automobile or airplane, requires

consideration of the motion to which it is subjected.

o Mechanical devices, such as motors, pumps, movable tools, industrial

manipulators, and machinery.

o Predictions of the motions of artificial satellites, projectiles, and spacecraft are

based on the theory of dynamics.

o With further advances in technology, there will be an even greater need for

knowing how to apply the principles of this subject.



O Rectilinear Kinematics: Continuous Motion

O In the first part of dynamics, we will start by discussing the kinematics of a particle that moves along a
rectilinear or straight-line path.

O The particle has a mass but negligible size and shape.
O We will be interested in bodies of finite size, such as rockets, projectiles, or vehicles.

U Each of these objects can be considered as a particle, as long as the motion is characterized by the motion of
its mass center and any rotation of the body is neglected.

% Rectilinear Kinematics. The kinematics of a particle is characterized by specifying, at any given instant, the
particle's position, velocity, and acceleration.

D)

o Position. The straight-line path of a particle will be defined using a single coordinate

axis s, Fig.1.

o

o The origin O on the path is a fixed point, and from this point the position ¢ s
coordinate s is used to specify the location of the particle at any given instant. Position
o The magnitude of s is the distance from O to the particle, usually measured in meters Fig.1.

(m) or feet (ft), and the sense of direction is defined by the algebraic sign on s.

o In this case s is positive since the coordinate axis is positive to the right of the
origin.

o Itis negative if the particle is located to the left of O.

o Position is a vector quantity since it has both magnitude and direction.



Displacement. The displacement of the particle is defined as the change in its position. For

example, if the particle moves from one point to another, Fig.2., the displacement is

P 1
"
[

&

Fa%sy <{
[

Displacement

Fig.2.

In this case As is positive since the particle's final position is to the right of its initial position,
ie,s >s.

If the final position were to the left of its initial position, As would be negative.

The displacement of a particle is also a vector quantity and it should be distinguished from the
distance the particle travels.
The distance traveled is a positive scalar that represents the total length of the path over which the

particle travels.



Velocity. If the particle moves through a displacement As during the time intervalAt, the average velocity of the

particle during this time interval is

As
L';m__t = Ar | (2)

If we take smaller and smaller values of At, the magnitude of As becomes smaller and smaller. Consequently, the

instantaneous velocity is a vector defined as

¥

= Im(3/80] @ | S
ds !—ﬁ.‘;‘*‘
()| v =" (d)
Or el Velocity
Fig.3.

Since At or dt is always positive, the sign used to define the sense of the velocity is the same as that of As or

ds.

For example, if the particle is moving to the right, Fig.3, the velocity is positive; whereas if it is moving to

the left, the velocity is negative.

The magnitude of the velocity is known as the speed, and it is generally expressed in units of m/s or ft/s.
The average speed is always a positive scalar and is defined as the fotal distance traveled by a particle, Sy,

divided by the elapsed time At; i.e., sr

(*’I.‘ip]il'ﬁ'g = .&l‘ .....(5)

Particle in Fig.4 travels along the path of length S in time At, so its average
speed is (vsp)avg = Sr/At, but its average velocity is v,,, = — s /At .

Average velocity and
Average speed

Fig.4




o

Acceleration. Provided the velocity of the particle is known at two points, the average acceleration of the
particle during the time interval At is defined as

Aw

Ayyg = T ...(6)

Av represents the difference in the velocity during the time interval At, i.e., Av = v' — v, Fig.5.

.o|

Y o
1

W

v ¥

Acceleration

Fig.5.
The instantaneous acceleration at time t is a vector that is found by taking smaller and smaller values of At and

: . A
corresponding smaller and smaller values of Av, so that a = Al%mO(A—’;) , or
_)

v a
) la="| .0 —
(=) = (7) OI o,
dZ
ittt H - . ( L } a = —g (8) Deceleration
Substituting Eq.4 into this result, we can also write dt .

Both the average and instantaneous acceleration can be either positive or negative.

when the particle is slowing down, or its speed is decreasing, the particle is said to be decelerating. In this case,
v'in Fig.6 is less than v and so Av = v' — v will be negative.

a will also be regative, and therefore it will act to the /efz in the opposite sense to v. Also, note that when the
velocity is constant, the acceleration is zerosince Av = v — v = 0.

Units commonly used to express the magnitude of acceleration are ™/ ; or ft/s?.



O

O

O

O

The important differential relation involving the displacement, velocity, and acceleration along the path may be
obtained by eliminating the time differential dt between Eqgs. 4 and 7, which gives

(B) ads=uvdv | .9

Constant Acceleration, a = a..When the acceleration is constant, each of the three kinematic equations

=Ly = E, and a.ds = v dv can be integrated to obtain formulas that relate a., v, s, and t.

a. = v =
¢ at’ dt

Velocity as a Function of Time. Integrate a. = dv/dt, assuming that initially v = v, whent = 0.

il of
/ dv = / i, dt
Sy [

v = vy + ad
Constant Acceleration | -- ...(10)

(+)

Position as a Function of Time. Integrate v = ds/dt = v, + a.t, assuming that initially s = sywhen
t =0.
5 I
/d.&' = f(fuﬂ + at) dt
iy [}

_ 1. 2
5§ =5y + wyt +5a.1
[5) 2

....(11)

Constant Acceleration




o Velocity as a Function of Position. Either solve for ¢t in Eq. 10 and substitute into Eg. 11, or integrate

vdv = a.ds,assuming that initially v = v, ats = s,.

Wil o
/ vdv = / a.ds
o Uy &y

() | = v+ 2ads = so)
Constant Acceleration

. (12)

o The algebraic signs of s,,v,,and a,. , used in the above three equations, are determined from the positive
direction of the s axis as indicated by the arrow written at the left of each equation.

o Remember that these equations are useful only when the acceleration is constant and whent = 0,s = s, ,v
== Uo.

o Atypical example of constant accelerated motion occurs when a body falls freely toward the earth.

o Ifair resistance is neglected and the distance of fall is short, then the downward acceleration of the body when it

is close to the earth is constant and approximately 9.81 m/s? or 32.2 ft/s?.



¢ Procedure for Analysis
0 Coordinate System.
o Establish a position coordinate s along the path and specify its fixed origin and positive

direction.

o Since motion is along a straight line, the vector quantities position, velocity, and acceleration can
be represented as algebraic scalars. For analytical work the sense of s, v, and a is then defined by
their algebraic signs.

o The positive sense for each of these scalars can be indicated by an arrow shown alongside each
Kinematic equation as it is applied.

O Kinematic Equations.

o If a relation is known between any two of the four variables a, v, sand t, then a third variable can
be obtained by using one of the kinematic equations,a = dv/dt,v = ds/dtorads = v dv,
since each equation relates all three variables.

o Whenever integration is performed, it is important that the position and velocity be known at a
given instant in order to evaluate either the constant of integration if an indefinite integral is used,
or the limits of integration if a definite integral is used.

o Remember that Eqgs. 10 through 12 have only limited use. These equations apply only when the

acceleration is constant and the initial conditionsare s = s, andv = vywhent = 0.



Ex.1. The car in Fig. 7 moves in a straight line such that for a short time its velocity is defined by v = (3t? + 2t) ft

/s, where t is in seconds. Determine its position and acceleration when ¢

Sol.

% Coordinate System. The position coordinate
fixed origin O to the car, positive to the right.

% Position. Since v = f(t), the car's position can be determined from v

v,s,and t. Noting that s = Owhent = 0, we have
() v=%={3z2+21)

r
/{3;2 + 2¢)drt
J0

/ds
Jo

5
A

4

2+ 2

0
s =3+ 1
When ¢ = 3 s,

s = (3) + (3)2 = 36ft

«» Acceleration. Since v

a,v,and t.
dv d
o =—= (3 + 2
( ) dr a‘l( )
= 6f + 2
When ¢ = 3 s,

a=6(3)+ 2 =20ft/s>—

D)

function of time.

extends

from

3s.Whent = 0,s = 0.

the

0

Fig.7.

ds/ dt, since this equation relates

—

The same result can be obtained by evaluating a
constant of integration C rather than using definite
| limits on the integral. For example, integrating
| ds = (3t?+ 2t)dt yields s = t3+ t?+ C .
Using the condition that at t 0,s 0, then

c =0.

f(t), the acceleration is determined from a

dv/dt, since this equation relates

» NOTE: The formulas for constant acceleration cannot be used to solve this problem, because the acceleration is a




Ex.2. During a test a rocket travels upward at 75 m/s, and when it is 40 m from the ground its engine fails.
Determine the maximum height sz reached by the rocket and its speed just before it hits the ground. While in
motion the rocket is subjected to a constant downward acceleration of 9.81 m/s2due to gravity. Neglect the
effect of air resistance.

% Coordinate System. The origin O for the position coordinate s is taken at ground level with
positive upward, Fig. 8. vp=10

s Maximum Height. !
o Since the rocket is traveling upward, v, = + 75m/swhent = 0.
o At the maximum height s = sy the velocity vy, = 0.
o  For the entire motion, the acceleration is a, = —9.81 m/s? (negative since it acts in the opposite
sense to positive velocity or positive displacement). Since a,. is constant the rocket's position may
be related to its velocity at the two points A and B on the path by using Eq. 12, namely

(+1) vp = Vi + 2a,(sp — sa)
0 = (75m/s)*> + 2(—9.81 m/s*)(sg — 40 m) Sp
sg = 327 m

s \elocity.
o To obtain the velocity of the rocket just before it hits the ground, we can apply Eq. 12 between "uA=75m/sT
points B and C, Fig8. (+1) v: = v} + 2a.(sc — Sp) _ ﬂ

=0+ 2(—9.81 m/s*)(0 — 327 m)

ve = —80.1 m/s = 80.1 m/s ) 5, =40m ! B

o The negative root was chosen since the rocket is moving downward. Similarly, Eq. 1 may also be ¥ . s
applied between points Aand C, i.e., +T v = 4 + 2a.(sc — 54) —]0

= (75m/s)* + 2(—9.81 m/s*)(0 — 40 m) Fig.8.

ve = —80.1m/s = 801 m/s |

It should be realized that the rocket is subjected to a deceleration from A to B of 9.81 m/s?, and then from B to C it is
accelerated at this rate. Furthermore, even though the rocket momentarily comes to rest at B (v = 0) the acceleration at B is
still 9.81 m/s2downward.



Ex.3. A small projectile is fired vertically downward into a fluid medium with an initial velocity of 60 m/s. Due to the drag
resistance of the fluid the projectile experiences a deceleration of a = (—0.4v3) m/s?, where v is in m/s. Determine
the projectile's velocity and position 4 s after it is fired.

+ Coordinate System. Since the motion is downward, the position coordinate is positive
downward, with origin located at O, Fig.9.

% \elocity. Here a = f(v) and so we must determine the velocity as a function of time using
= dv/ dt, since this equation relates v, a, and t. Separating the variables and integrating,
with v,= 60 m/s whent = 0, yields

dv

| —— O — 3
(+1) a =¥ 0.4v
av ¢ . [ LT oo ST coe
T dt Sl ————— i Here the positive root is taken, since the projectile :
A N = will continue to move downward. Whent = 4s, |
v b 1
(L)L =c-o0
’—0.4 —2, VNGO e,
__________ (I
01 [? 2 _2] == /.v = (. ‘:‘:9111,’%
8 (602 — et

v = {[(6:))2 - O.St]-m} m/s

Position. Knowing v = f(t), we can obtain the projectile's position from v = ds/ dt, since this equation relates s, v, and t.
Using the initial condition s = 0, whent = 0, we have

(+1) B +us:rﬁ

_ ds [
“ e L(eo

s = —— 4+ 08¢ H”:df
L= [l + o]

2 | Ill"z
§ == |——— + 08
= Sl ] |
PR ([ T .;H,]'sz _ L} m <CIIIIIII Whent =45
0.4 Ll (60)* 60 N ————I-.————
I
7
r———— — - A
| s= 443m !
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Curvilinear motion

Curvilinear motion occurs when a particle moves along a curved path.

L Since this path is often described in three dimensions, vector analysis will be used to formulate

\/
000

©)

the particle's position, velocity, and acceleration.

Position.

Consider a particle located at a point on a space curve defined by the path
function s(t) as shown in Fig.1.

The position of the particle, measured from a fixed point O, will be
designated by the position vectorr = r(t).

The magnitude and direction of this vector will change as the particle
moves along the curve.

Displacement.

Suppose that during a small time interval At the particle moves a distance
As along the curve to a new position, defined by ' = r + Ar, as shown
in Fig.2.

The displacement Ar represents the change in the particle's position and

is determined by vector subtraction; i.e., Ar = ' — 7.

Position

Fig.1.

Displacement

Fig.2.



s Velocity.

Ar

o During the time At, the average velocity of the particle Is = v,yg= —

o The instantaneous velocity is determined from this equation by letting
At — 0. g

o The direction of Ar approaches the tangent to the curve.

Ar or dr

o Hence, v= lim(— - v=—......(1
At—>0( At dt ( ) Velocity
o Since dr will be tangent to the curve, the direction of v is also tangent to Fig.3.

Fig.3.

o The magnitude of v, which is called the speed, is obtained by realizing that the length of the
straight line segment Ar in Fig.2. approaches the arc length As as At — 0, we have ,

: Ary _ . As\Oor ~_ ds
V= Al%m)(ﬂ)_ﬁ%(m)_)v_ e e e (2)

o Thus, the speed can be obtained by differentiating the path function swith respect to time.



+» Acceleration.

o If the particle has a velocity vat time fand a velocity vi = v + Avat
t + At, as shown in Fig.4. , then the average acceleration of the

: : L : Av :
particle during the time interval At is Gy = v Fig.4.

o where Av = v/ — v
o To study this time rate of change, the two velocity vectors in Fig. 4 are
plotted in Fig. 5 such that their tails are located at the fixed point
0" and their arrowheads touch points on a curve. —
o This curve is called a hodograph, and when constructed, it describes V v
the locus of points for the arrowhead of the velocity vector in the same .
manner as the path s describes the locus of points for the arrowhead of ' i o
the position vector, Fig.1. Fig 5.

To obtain the /nstantaneous acceleration, let At — 0 in the above equation. In the limit Av will
approach the tangent to the hodograph, and so

. Av or dv —— Hodograph
= lim (— — = e e
d At—>0( At d dt (3) ¥
2

By Subs. Eq. 1. into this result, we can also write a = % ° Fig.6. -
By definition of the derivative, a acts tangent to the hodograph, Fig. 6, "
and, in general it is not tangent to the path of motion, Fig. 7. FW/ By

a

In summary, v is always tangent to the path and a is always tangent to the
hodograph.

]
Acceleration ¢ path



Curvilinear Motion: Rectangular Components

O Occasionally the motion of a particle can best be described along a path that can be
expressed in terms of its x, y, z coordinates.

(]

/ =,
5 o
F " Z
. ~r=xi+y +zk
= i X
u. ¥
. -
¢ Position. Fig. 8. Position

o If the particle is at point (x, y, z) on the curved path s shown in Fig. 8, then its location is defined
by the position vector

r =xi+yj +zk........(4)

o When the particle moves, the x,y, z components of » will be functions of time; i.e., x = x(¢),y
= y(t),z = z(t),sothatr = r(t).

o At any instant the magnitude of r is definedas r = \/xz + y? + 72

o And the direction of r is specified by the unit vector U, = —



“* Velocity.

O

The first time derivative of r yields the velocity of the particle. Hence,

dr

v= S5 = () + 0D + 5 (k)

It is necessary to account for changes in bot/1 the magnitude and direction of each of the vector's components.

The derivative of the i component of r is f: xi) = ‘-‘”-. oy i
ol

di Fel,

The second term on the right side is zero, provided the x, y, z reference frame is 7/xed, and therefore the direction
and the magnitude of i does not change with time.

Differentiation of the j and k components may be carried out in a similar manner, which yields the final result,

= A e ) D

A= = o D) e A v (B)
where ) ; :

e =X U, T Y U= I ..(6)

The "dot" notation x, y, Z represents the first time derivatives of x = x(t),y = y(t),z = z(t), respectively.

=

The velocity has a magnitude that is found from o = "v’ bi + b., + 1,

L : .. : \
And a direction that is specified by the unit vector U,, = > S -
v=ui+ i+ vk

1?

this direction is always tangent to the path, as shown in Fig.9. /

X
Fig.9. Velocity



¢ Acceleration.
The acceleration of the particle is obtained by taking the first time derivative of Eq. 5. (or the second time

O
derivative of Eq. 4.). We have
e

dv . .
a=""=aitajtak| ... R
4

L
o Where a, =9, = X = ad+ aj+ ak
ay, =0, =y ...(8) g
a, =v, =32 x
Fig. 10. Acceleration

Here a, , a,, a, represent, respectively, the first time derivatives of v, = v, (1), v, =1y (1), v, = v, (1).

O
o Or the second time derivatives of the functions x = x(t),y = y(t),z = z(t).
o The acceleration has a magnitude
a= a?;, + H_',:E. + H%
o and a direction specified by the unit vector U, = —
o Since a represents the time rate of change in both the magnitude and direction of the velocity, in general a will
not be tangent to the path, as shown in Fig. 10.



Motion of a Projectile

U The free-flight motion of a projectile is often studied in terms of its rectangular

components.

O To illustrate the Kinematic analysis, consider a projectile launched at point
(X0, Yo), With an initial velocity of v,, having components (v,)x and (v,)y , Fig. 11.

¥

-

|ﬂ=g

¥o

('”u};T

(Vo)

¥

T

X

Fig. 11.

O Air resistance is neglected, the only force acting on the projectile is its weight, which
causes the projectile to have a constant downward acceleration of approximately

ft

a.= g = 9.81 =z

m
Sz

org = 32.2



¢ Horizontal Motion.
o Since a, = 0, application of the constant acceleration equations, yields

(5) v =1y t+ ad; vy = (Vg
{—t] X = xy+ vyt + éﬁ'{.t'z; x = x5+ (vg)ed
{$] w = ’Uﬁ + 2ax — xp); vy = (Vp)y

o The First and last equations indicate that the /orizontal component of velocity always
remains constant auring the motion.

+ Vertical Motion.
o Since the positive y axis is directed upward, then a, = —g, we get

{-I-T} v =y T oag; v, = (v0), — gt
(+1) y =Y+ttt én{.fz; Y=+ ()t - %grl

o Recall that the last equation can be formulated on the basis of eliminating the time ¢
from the first two equations, and therefore only two of the above three equations are
independent of one another.



EXAMPLE

At any instant the horizontal position of the weather balloon in
Fig. 121is defined by x = (8r) ft, where 7 is in seconds. If the equation

= B
of the path is y = x2/10, determine the magnitude and direction
of the velocity and the acceleration when r = 2 s,
SOLUTION

Velocity. The velocity componentin the x direction is

v = & = :1—1[(8:) = 8 ft/s —

! 16 ft
(a)

To find the relationship between the velocity components we will use
the chain rule of calculus. (See Appendix A for a full explanation.)

v, =y = %(.12/10) = 2x%/10 = 2(16)(8)/10 = 25.6ft/s T

When r = 2 s, the magnitude of velocity is therefore

v = /(8 ft/s)? + (25.6 fi/s)> = 268 fi/s

The direction is tangent to the path, Fig. 1256, where v =2681ft/s

v 25.6 oLl
0, = tan1—= = tan! = 72.6° 5 \
Acceleration. The relationship between the acceleration components (b)
is determined using the chain rule. (See Appendix C.) We have
s, a .
ac= b =(8) =0
a, = b, = %(2.1‘5.’/10) = 2(&)&/10 + 2x(¥)/10
2 : [
= 2(8)%/10 + 2(16)(0)/10 = 12.8ft/s> T
Thus, a =128 f
a = \/(0)% + (12.8)2 = 12.8 ft/s> : .fa =90
B -
The direction of a, as shown in Fig. 12¢,1s ©
c
12.8
== = o2 M loaee s o
6, = tan on = 90 Fig. 12



EXAMPLE |20

v
/y = 0.001x2
100 m ] e =
e e x
(a)
v
(]
i
100 rn) o B
LSS x
(b)
Fig. 13

For a short time, the path of the plane in Fig. 13 @ is described by
¥ = (0.001x%) m. If the plane is rising with a constant velocity of 10 m/s,
determine the magnitudes of the velocity and accelemtion of the plane
whenitis at y = 100 m.

SOLUTION
When y = 100m, then 100 = 0.001x? or x = 316.2 m. Also, since

v, = 10 m/s, then
y = VI 100 m = (10m/s) ¢ t = 10 s
Velocity. Using the chain rule (see Appendix C) to find the

relationship between the velocity components, we have

% (0.001x?) = (0.002x)i = 0.002xv, (1)

v_V — )t

Thus

10 m/s = 0.002(316.2 m)(v,)
v, = 1581 m/s

The magnitude of the velocity is therefore

v = \vZ + vl = (1581 m/s)> + (10 m/s)> = 18.7 m/s

Acceleration. Using the chain rule, the time derivative of Eq. (1)
gives the relation between the acceleration components.

a, = ¥, = 0.002xv, + 0.002x¥, = 0.002(v: + xa,)

When x = 316.2m, v, = 1581 m/s, ¥, = a, = 0,

0 = 0.002((15.81 m/s)” + 316.2 m(a,))
a, = —0.791 m/s>

The magnitude of the plane’s acceleration is therefore

a = \/a2 + a2 = \J/(—0.791 m/s?)> + (0 m/s?)?2

= 0.791 m/s?

These results are shown in Fig. 135H.



EXAMPLE |92.92

A sack slides off the ramp, shown in Fig. 1221, with a horizontal
velocity of 12 m/s. If the height of the ramp is 6 mm from the floor,
determine the time needed for the sack to strike the floor and the
range R where sacks begin to pile up.

Fig. 1221

SOLUTION

Coordinate System. The origin of coordinates is established at the
beginning of the path,point A Fig. 12—21_The initial velocity of a sack has
components (v4), = 12 m/sand (v,4), = 0. Also,between points A and
B the acceleraton is a, = —9.81 m/s?. Since (vg)x = (P4)x = 12 m/s,
the three unknowns are (vg),, &, and the time offlight 7 4, 5. Here we do
not need to determine (vg), -

Vertical Motion. The vertical distance from 1 to B is known, and
therefore we can obtain a direct solution for 7z 4, by using the equation

—6m = 0 + 0 + 3(—9.81 m/s?)ri s
Tag — 1.11 s AAris.

Horizontal Motion. Since 7 45 has been calculated, R is determined
as follows:

59 xg = xa + (Dadxtas

R =0 + 12 m/s (1.11 s)

R = 13.3 m Ars.
NOTE: The calculation for 7_,g also indicates that if a sack were

released frorrz resr at A _.it would take the same amount of time to strike
the floorat C. Fig. 12— 21.



EXAMPLE [12.92

The chipping machine is designed to eject wood chips at v, = 25 ft/s
as shown in Fig. 1222 If the tube is oriented at 30° from the
horizontal, determine how high, /2, the chips strike the pile if at this
instant they land on the pile 20 ft from the tube.

Fig. 12-22

SOLUTION

Coordinate System. When the motion is analyzed between points
O and A, the three unknowns are the height /z, time of flight 7, 4, and
vertical component of velocity (v 4),. [Note that (v 4). = (vo)x-] With
the origin of coordinates at O, Fig. 12-22, the initial velocity of a chip
has components of

(vo)x = (25 cos 30°) ft/s = 21.65ft/s —
(vo), = (25sin30°) ft/s = 12.5 ft/sT

Also, (v4)r = (Vo)x = 21.65 ft/s and a, = —32.2 ft/s? Since we do
not need to determine (v,),, we have

Horizontal Motion.
6=, X4 = xo + (Vo)xloa
20 ft O + (21.65ft/s)ipa
toa = 0.9238 s

Vertical Motion. Relating 7, 4 to the initial and final elevations of a
chip, we have

(1) Ya = Yo + (v0)foa + 3asdba
(s — 4ft) = 0 + (12.5 f1/s)(0.9238 s) + 5(—32.2 f1/s2)(0.9238 s)?
/i = 1.81ft Arns.

NOTE: We can determine (v4), by using (v.), = (vo), + aloa-




EXAMPLEf9243

The track for this racing event was designed so that riders jump off the
slope at 30°, from a height of 1 m. During a race it was observed that
the rider shown in Fig. 12-23a remained in mid air for 1.5 s. Determine
the speed at which he was traveling off the ramp. the horizontal
distance he travels before striking the ground, and the maximum
height he attains. Neglect the size of the bike and rider.

SOLUTION ¥
Coordinate System. As shown in Fig. 122354, the origin of the

C
coordinates is established at A. Between the end points of the path ) =
AB the three unknowns are the initial speed »,, range R, and the A
vertical component of velocity (vg),.- 21 ' x
m
Vertical Motion. Since the time of flight and the vertical distance L i B
between the ends of the path are known, we can determine v 4. =
(+T) ¥B. = Ya + (Va4),lap + %(1(1::113 ()
—1m = 0 + v,sin30°(1.5s) + 2(—9.81 m/s?)(1.5 s)?
Fig. 1223
vqa = 1338 m/s = 13.4 m/s Aris. =
Horizontal Motion. The range R can now be determined.
(=) xXp = X4 + (Va)slan
R =0 + 1338 cos30°m/s(1.5 s)
= 174 m Arns.

In order to find the maximum height /7 we will consider the path
AC, Fig. 12—-23b. Here the three unknowns are the time of flight 7 4.,
the horizontal distance from A to C, and the height /. At the
maximum height (o), = 0, and since v 4 is known, we can determine
h directly without considering 74 using the following equation.

(v(;)j?, = (UA),% + 2a.[yc — yal
0% = (13.38sin 30° m/s)*> + 2(—9.81 m/s?)[(# — 1 m) — 0]
/i = 3.28 m Aris.

NOTE: Show that the bike will strike the ground at B with a velocity
having components of

(vp)x = 116 m/s—, (vg), = 8.02m/s!l




Rotation

4 Planar Rigid-Body Motion.

o The study of planar kinematics of a rigid body is important for the design of gears,
cams, and mechanisms used for many mechanical operations.

o Once the kinematics is thoroughly understood, then we can apply the equations of
motion, which relate the forces on the body to the body's motion.

o The planar motion of a body occurs when all the particles of a rigid body move along
paths which are equidistant from a fixed plane.

o There are three types of rigid body planar motion, in order of increasing complexity,

they are



+» Translation.

O

4

4

L)

This type of motion occurs when a line in the body remains parallel to its
original orientation throughout the motion.

When the paths of motion for any two points on the body are parallel lines, the
motion is called rectilinear translation, Fig.la.

If the paths of motion are along curved lines which are equidistant, the motion

is called curvilinear translation, Fig.1b.

Rotation about a fixed axis.

When a rigid body rotates about a fixed axis, all the particles of the body, except

those which lie on the axis of rotation, move along circular paths, Fig. 1c.

General plane motion.

When a body is subjected to general plane motion, it undergoes a combination
of translation and rotation, Fig. 1d.

The translation occurs within a reference plane, and the rotation occurs about

an axis perpendicular to the reference plane.

@ /
7 o cemmn
4

f

|
Path of rectilinear translation

t'.k.(

=

a)
' i }
i
-~}

Path of curvilinear translation

{(b)

General plane motion
(d)

Fig.1.



+¢» Rotation a bout a Fixed Axis

o When a body rotates about a fixed axis, any point P located in the body travels along a

circular path.
o To study this motion it is first necessary to discuss the angular motion of the body about

the axis.

O Angular Motion.

o Since a point is without dimension, it cannot have angular motion. Only lines or bodies

undergo angular motion. h
o For example, consider the body shown in Fig.2a and the angular motion of a radial line
r located within the shaded plane.

O Angular Position.

o At the instant shown, the angular position of r is defined by the angle 6, measured
from a fixed reference line to r.

O Angular Displacement.

o The change in the angular position, which can be measured as a differential dé, is
called the angular displacement.

o This vector has a magnitude of df, measured in degrees, radians, or revolutions,
where 1 rev = 2w rad.

o Since motion is about a fixed axis, the direction of d@ is always along this axis.

o The direction is determined by the right-hand rule; that is, the fingers of the right hand
are curled with the sense of rotation, so that in this case the thumb, or dé, points
upward, Fig. 2a.

o In two dimensions, as shown by the top view of the shaded plane, Fig.2b, both 8 and
d6 are counterclockwise, and so the thumb points outward from the page.




O Angular Velocity.

o The time rate of change in the angular position is called the angular velocity w

(omega). Since d6 occurs during an instant of time dt, then,

9

(G+) O | (1) H

o This vector has a magnitude which is often measured in raa/s.
o It is expressed here in scalar form since its direction is also along the axis of rotation,

Fig.2a.

o When indicating the angular motion in the shaded plane, Fig.2b, we can refer to the
sense of rotation as clockwise or counterclockwise.

o Here we have arbitrarily chosen counterclockwise rotations as posi/tive and indicated
this by the curl shown in parentheses next to Eq.1.

o Realize, however, that the directional sense of w is actually outward from the page.




s Angular Acceleration.

o The angular acceleration a (alpha) measures the time rate of change of the angular a8,
velocity. L
"Q|'
o The magnitude of this vector is g T\
e X
4 = — R f
(C4) — ) |

o ByEQqg.1,itis also possible to express a as

_d¥
df

(G+) o ..(3)

o The line of action of « is the same as that for w, Fig.2a; however, its sense of direction
depends on whether w is increasing or decreasing.

o If w is decreasing, then a is called an angular deceleration and therefore has a sense of
direction which is opposite to w .

o By eliminating dt from Egs.1 and 2, we obtain a differential relation between the angular
acceleration, angular velocity, and angular displacement, namely,

(C+) &{E-H:m{im. (4




O Constant Angular Acceleration..
o If the angular acceleration of the body is constant, « = a, then Egs.1,2,and 4,

when integrated, yield a set of formulas which relate the body's angular velocity,

angular position, and time. These equations are similar to used for rectilinear motion.

The results are

(C+) w=wy+ad | eee e (5)

(G+) 0=0,+wy +ia2 | e (6)

(G+) W' =i+ 200 —0) | ees e (7)
Constant Angular Acceleration

o Where:
0, and w, are the initial values of the body's angular position and angular velocity,

respectively.



Motion of Point P.

As the rigid body in Fig. 2c rotates, point P travels along a circular path
of radius r with center at point 0. This path is contained within the
shaded plane shown in top view, Fig. 2d .

Position and Displacement.

The position of P is defined by the position vector r, which extends from Oto P.

If the body rotates d@ then P will displace ds = r dé.

) (<)
Velocity. B,
The velocity of P has a magnitude which can be found by dividing ds = r d6 by |

[ o ."i
dt so that \/
v =awr| ... (8) e
(d)

Fig.2.

As shown in Figs. 2c and 2d, the direction of v is tangent to the circular path.

Both the magnitude and direction of v can also be accounted for by using the cross product of w and 7,
Where 7, is directed from any point on the axis of rotation to point P, Fig. 2c. We have

v=wxXrp ... (9

The order of the vectors in this formulation is important, since the cross product is not commutative, i.e.,
WXTF1r Xw
r lies in the plane of motion and again the velocity of point P is

V=w Xr .....(10)



L)

Acceleration.

The acceleration of P can be expressed in terms of its normal and tangential components.

Since a; = dv/dtand a, = v?/p,wherep = r,v = wr,and a = dw/dt, we have

i iy = er | """{11:]

a, = ar

e - (12)

The tangential component of acceleration, Figs. 2e and 2f, represents the time rate of
change in the velocity's magnitude.

If the speed of ~ is increasing, then a, acts in the same direction as v.

If the speed is decreasing, a; acts in the opposite direction of v.

If the speed is constant, a; is zero.

The normal component of acceleration represents the time rate of change in the
velocity's direction.

The direction of a,, is always toward O, the center of the circular path, Figs. 2e and 2f.

The acceleration of point ~can be expressed in terms of the vector cross product.

Taking the time derivative of Eq. 9 we have

lv ! dr o = de/dt.
dt dt dt drpfdit = v = w X rp
yields

a=ua Xrp+ w X (wXrp). . (13)




o Eq. 13 can be identified by its two components as

a:‘“r+a:r

=@ X — T | (14)

o Since a; and a,, are perpendicular to one another, if needed the magnitude of acceleration can be

determined from the Pythagorean theorem; namely , = /32 + o Fig2 f.



Procedure for Analysis

The velocity and acceleration of a point located on a rigid body that
is rotating about a fixed axis can be determined using the following
procedure.

Angular Motion.

Establish the positive sense of rotation about the axis of rotation
and show it alongside each kinematic equation as it is applied.

If a relation is known between any rwo of the four variables a, w,

¢, and 7, then a third variable can be obtained by using one of the

following kinematic equations which relates all three variables.

do  dw

T T a

If the body’s angular acceleration is constant, then the following
equations can be used:

o dfd = w dw

w = wqy + oad

0 = Oy + wot + FaL’

w? = wi + 2a0 — 6,)

Once the solution is obtained. the sense of . w. and « is
determined from the algebraic signs of their numerical
quantities.



Motion of Point P

® In most cases the velocity of P and its two components of
acceleration can be determined from the scalar equations

v = wr
a, = ar

a, = w’r

® If the geometry of the problem is difficult to visualize, the
following vector equations should be used:

V=w Xrp=w XTr

a2, =w X (0 Xr1p) = —w7r

Here rp is directed from any point on the axis of rotation to
point P, whereas r lies in the plane of motion of P. Either of
these vectors, along with @ and e, should be expressed in terms
of its i, jJ, k components, and, if necessary, the cross products
determined using a determinant expansion (see Eq. B-12).




ExampLe A

Fig..5

A cord is wrapped around a wheel in Fig. 5 ,which is initially at rest
when & = 0. If a force is applied to the cord and gives it an
acceleration a = (4r) m/s2, where 7 is in seconds, determine, as a
function of time, (a) the angular velocity of the wheel, and (b) the
angular position of line O/F in radians.

SOLUTION

Part (a). The wheel is subjected to rotation about a fixed axis passing
through point O. Thus, point 7 on the wheel has motion about a
circular path, and the acceleration of this point has bor/: tangential and
normal components. The tangential component is (ap), = (47) m/s%,
since the cord is wrapped around the wheel and moves rangerns to it
Hence the angular acceleration of the wheel is

(Gst) (ap), = ar
(47) m/s’ = a(0.2 m)
a = (20¢) rad/s? D
Using this result, the wheel’s angular velocity @ can now be

determined from a = dw/dt, since this equation relates «a, 7, and .
Integrating, with the initial condition that @« = O when ¢ = O, yields

(C+) a = ‘:;;’ = (20¢) rad fs2

’ 4
/wdw= /20((1(
0 0

w = 10r% rad/s D

Part (b). Using this result, the angular position ¢ of OF can be
found from w = d8&/dr, since this equation relates €&, w, and r.
Integrating,with the initial condition & = 0 when 7 = O, we have

(£=t) ‘%’=w=(10:2) rad/s

e ¥e
/ de = / 10:2 dr
0 0

© = 333¢° rad

NOTE: We cannot use the equation of constant angular acceleration,
since a is a function of time.



EXAMPLE i

The motor shown in the photo is used to turn a wheel and attached
blower contained within the housing. The details of the design are
shown in Fig. 16-6a. If the pulley A connected to the motor begins to
rotate from rest with a constant angular acceleration of a4 = 2 rad/s?,
determine the magnitudes of the velocity and acceleration of point P
on the wheel, after the pulley has turned two revolutions. Assume the
transmission belt does not slip on the pulley and wheel.

SOLUTION

Angular Motion. First we will convert the two revolutions to
radians. Since there are 27 rad in one revolution, then

04 = 2rev (217:' rad

) = 12.57 rad
rev

Since a 4 is constant, the angular velocity of pulley A is therefore

(C+) w* = wj + 2a.(0 — 6)
w3 = 0 + 2(2rad/s?*)(12.57 rad — 0)
w,y = 7.090 rad/s

The belt has the same speed and tangential component of
acceleration as it passes over the pulley and wheel. Thus,

UV =wursq = wgrg: 7090 rad/s (0.15 m) = wp(0.4m)
wp = 2.659 rad/s
a = ayry = agrg; 2rad/s? (0.15m) = ag(0.4 m)

ap = 0.750 rad/s?




Motion of P. As shown on the kinematic diagram in Fig. 16-6b,

we have
vp = wgrg = 2659 rad/s (0.4 m) = 1.06 m/s Ans.
(ap), = agrg = 0.750 rad/s’* (0.4 m) = 0.3 m/s’
(ap)y = whrg = (2659 rad/s)*(0.4 m) = 2.827 m/s*
Thus

ap = V(03 m/s’)* + (2.827 m/s?)? =284 m/s’ Ans

15




Kinetics of a Particle :\Work and Enerqgy

1 The Work of a Force.

We will analyze motion of a particle using the concepts of work and energy.
The resulting equation will be useful for solving problems that involve force,
velocity, and displacement.

A force F will do work on a particle only when the particle undergoes a

displacement in the direction of the force.

If the force F in Fig.1 causes the particle to move along the path s from position

!

r to a new position 7', the displacement is then dr = r’' — r.

The magnitude of dr is ds, the length of the differential segment along the path..

If the angle between the tails of dr and F is 0, Fig.1 , then the work done by F is a scalar quantity, defined by

dU = F dscos 6
This equation can also be written as

dU = F.dr
This result may be interpreted in one of two ways:

As the product of ~and the component of displacement ds cos 0 in the direction of the force.

Or , as the product of ds and the component of force, F cos 6, in the direction of displacement.



If 0° <8 < 90°, then the force component and the displacement have the same sense so that
the work is positive.

If 90° <6 <180°, these vectors will have opposite sense, and therefore the
work is negative.

dU = 0 if the force is perpendicular to displacement, since cos 90° = 0.

If the force is applied at a fixed point, in which case the displacement is zero.

The unit of work in SI units is the joule (]), which is the amount of work done by a one
— newton force when it moves through a distance of one meter in the direction of the force
(1] =1N - m).

In the foot-pound-second (FPS) system, work is measured in units of foot-pounds
(ft .lb), which is the work done by a one-pound force acting through a distance of one foot in

the direction of the force.



+s» Work of a Variable Force.

o If the particle acted upon by the force F undergoes a finite
displacement along its path from ryto r, or s to s, , Fig.2a, the
work of force F is determined by integration. Provided F and 6

can be expressed as a function of position, then.

) S»
Ui, = j F.dr = J FcosOds ... (1)
r S

1 1

o This relation may be obtained by using experimental data to plot
a graph of F cos@ vs. s.
o Then the area under this graph bounded by s;and s, represents

the total work, Fig.2b.

Foosg

(a)

(b)

Fig.2.




* Work of a Constant Force Moving Along a Straight Line.

o If the force F,. has a constant magnitude and acts at a constant angle 6 from
its straight-line path, Fig. 3a, then the component of F. in the direction of 5 iy

displacement is always F,. cos 6. S Fecos8 %
o The work done by F. when the particle is displaced from s; to s, is
determined from Eq. 1, in which case

U;_,=F_.cos0 f:z ds or U;_, =F.cos0(s,—5;) ........ 2) Foas@
1
o Here the work of F, represents the area of the rectangle in Fig.3b. HEE
% Work of a Weight. B 5
(b)
o Consider a particle of weight W, which moves up along the path s shown in Fig.4 Fig.3
from position s, to position s,. g9.2.
o Atan intermediate point, the displacement dr = dx; + dy; + dz. y
o Since W = —W;, applying Eq.1. we have
r T2 W -5'2/
U1—2 = f F.dr = f (—W])(dxl + dy] + de) 1:&
r1 1 5
y2 _f__g' i %
=| —Wdy=-W(Q{2—y1) T l v
Y1 M 7
Uy =-WAy ... 3) -
. e
o The work is independent of the path and is equal to the magnitude of the particle's Fig.4.

weight times its vertical displacement.

» In the case shown in Fig. 4 the work is negative, since W is downward and Ay is upward.
» If the particle is displaced downward (—Ay), the work of the weight is positive.



* Work of a Spring Force.

o If an elastic spring is elongated a distance ds, Fig. 5a, then Unstretched
the work done by the force that acts on the attached particle postim s =2
IS
dU = — F,ds = —ksds. | s
o The work is negative since F acts in the opposite sense to ¢ L
dS. | Particle
(a)
o If the particle displaces from s; to s,, the work of F; is F,
then ks
S» S» _f__.-f’"f II
Ui_, = f F.ds = j —ksds il
5 S 5y //,I[ 2 -
1 1 (b)
Uiz = _(Ek $3% — Ek 51‘2) ........ (4) Fig.5.

o This work represents the trapezoidal area under the line
F; = ks, Fig. 5b.



4 Principle of Work and Energy.

O

Consider the particle in Fig.6, which is located on the path defined relative
to an inertial coordinate system.

If the particle has a mass m and is subjected to a system of external forces ( SF ¢
. R & L | o
represented by the resultant F, = ). F, then the equation of motion for the ”%:_L.-:,inll_____
particle in the tangential direction is ). F, = ma,. H,f” i 5' | 3~
L i )
2 - =z

Applying the kinematic equation a, = v dv/ds and integrating both sides, SFEY — Fr=2F
assuming initially that the particle has a position s = s; and a speed \

v = vy,and laterats = s,, v = v,, we have !

= I,-"F EF; ds = j -:mb‘ v FIgG

E\/-SE.F} ds = %mv‘% — %jn?_,l?r ........ (5)
From Fig.6, note that )} F, = ). Fcos 6 , and since work is defined from Eqg.1, the final result can be written as

YU, = %mvzz - % mv? (6)
This equation represents the principle of work and energy for the particle.
The term on the left is the sum of the work done by all the forces acting on the particle as the particle moves from

point 1 to point 2.

The terms T = %mvz define the particle's final and initial kinetic energy.

Work, kinetic energy is a scalar and has units of joules (J). Work, which can be either positive or negative but the

Kinetic energy is always positive, regardless of the direction of motion of the particle.



o Eq.6is applied, it is often expressed in the form

T, + z U_,=T, .. 7)

o Eq. 7. states that the particle’s initial kinetic energy plus the work done by all the forces acting on the particle as
it moves from its initial to its final position is equal to the particle's final Kinetic energy.



O Principle of Work and Energy for a System of Particles.

©)

The principle of work and energy can be extended to include a
system of particles isolated within an enclosed region of space
as shown in Fig. 7.

The arbitrary ith particle, having a mass m;, is subjected to a
resultant external force F; and a resultant internal force f;
which all the other particles exert on the ith particle.

If we apply the principle of work and energy to this and each
of the other particles in the system, then since work and energy
the equations can be summed

are scalar quantities,

algebraically, which gives

Inertial coordinate system

Fig. 7.

In this case, the initial Kinetic energy of the system plus the work done by all the external

and internal forces acting on the system is equal to the final kinetic energy of the system.



O

©)

¢ Work of Friction Caused by Sliding.

A special class of problems will now be investigated which requires a careful application of Eq. 8.

These problems involve cases where a body slides over the surface of
another body in the presence of friction. v v
For example, a block which is translating a distance s over a rough
surface as shown in Fig. 8a.

If the applied force P just balances the resultant frictional force | . |
Ui N, Fig.8b, then due to equilibrium a constant velocity v is
maintained, and one would expect Eq. 8. to be applied as follows:

(a)

w
%m’vz + Ps — u Ns = %m'v2 1 |

L] e P

Indeed this equation is satisfied if P = u; N; however, as one realizes =
"=

from experience, the sliding motion will generate heat, a form of

N
energy which seems not to be accounted for in the work-energy 0
equation. Fig.8.

In summary then, Eq. 8 can be applied to problems involving sliding friction; however, it should be
fully realized that the work of the resultant frictional force is not represented by u; N's ; instead, this
term represents both the external work of friction (u;Ns') and internal work [ uN (s

— s")] which is converted into various forms of internal energy, such as heat.



EXAMPLE

The 10-kg block shown in Fig. 94 rests on the smooth incline. If the

spring is originally stretched 0.5 m, determine the total work done by

all the forces acting on the block when a horizontal force £2 = 400 N /\
pushes the block up the plane s = 2 m. : // e o

Initial
\\r:osilion of spring
4001 / :

_—k=30N/m

"ge%/

2 sin 30° m

SOLUTION
First the free-body diagram of the block is drawn in order to account > cos 30° m
for all the forces that act on the block, Fig. 954.

(a)
Horizontal Force P. Since this force is cornstrarne, the work is
determined using EEq. -2-  The result can be calculated as the force
times the component of displacement in the direction of the forcesi.c., 98.1 N 1.30°
Up = 400N (2 m cos30°) = 692.817J l - = 400 N
30“’
or the displacement times the component of force in the direction of Ny r,
displacement, i.c.,
()
Up = 400 N cos30°(2m) = 692817 =
Fig. 9

Spring Force F_.. In the initial position the spring is stretched
57 = 0.5 m and in the final position it is stretched s, = 05 m + 2 m =
2.5 m. We require the work to be negative since the force and
displacement are opposite to cach other. The work of F, is thus

U, = —[L(B30N/m)(2.5m)> — 3(30 N/m)(0.5m)2] = —907J

Weight W. Since the weight acts in the opposite sensc to its vertical
displacement, the work is ncgative; i.c.,

Uyw = —(98.1 N) (2 msin30°) = —98.1 J

Note that it is also possible to consider the component of weight in the
direction of displacement; i.c.,

Uyw = —(98.1sin30° N) (2 m) = —98.17J

Normal Force Ng. This force does no work since it is afways
perpendicular to the displacement.

Total Work. The work of all the forces when the block is displaced
2 mis thercfore

UpF =6928J — 90J — 98.1J = 50517 Ans.



EXAMPLE |2

e ,;;E).O b \
\ |0°A'I e
X F
PR
N
(b)
Fig. 10-

The 3500-1b automobile shown in Fig. 10a travels down the 10°
inclined road at a speed of 20 ft/s. If the driver jams on the brakes,
causing his wheels to lock, determine how far s the tires skid on the
road. The coefficient of kinetic friction between the wheels and the
road is g = 0.5.

SOLUTION
This problem can be solved using the principle of work and energy,
since it involves force, velocity, and displacement.

Work (Free-Body Diagram). As shown in Fig. 105: , the normal
force N 4 does no work since it never undergoes displacement along its
line of action. The weight, 3500 1b, is displaced s sin 10° and does
positive work. Why? The frictional force F, does both external and
internal work when it undergoes a displacement s. This work is negative
since it is in the opposite sense of direction to the displacement.
Applying the equation of equilibrium normal to the road, we have

+NZF, = 0; N, — 3500 cos 10°1b = 0O N, = 3446.8 1b

Thus,
Fa = pe Ny = 05 (34468 1b) —

Principle of Work and Energy.
Ty + SUja =15

1723.4 Ib

_( 3500 Ib.
32.2 f1/s?

Solving for s yields

)(20 fi/s)2 + 3500 Ib(s sin 10°) — (1723.41b)s —

s = 19.5ft Ans.

NOTE: If this problem is solved by using the equation of motion, rwo
ste ps are involved. First, from the free-body diagram, Fig. 1056, the
equation of motion is applied along the incline. This yields

+=F, = mas; 3500sin 10°1b — 1723.41b = —2210_,
32.2 fi/s
a = —10.3 fi/s?
Then, since «a is constant, we have
(+«) 22 = % + 2ac(s — %);

(0)?2 = (20 fi/s)? + 2(—10.3 fi/s?)(s — 0)
s = 19.5 ft Ans.
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Vibrations
A vibration is the periodic motion of a body or system of connected bodies displaced from a

position of equilibrium.

In general, there are two types of vibration, free and forced.

Free vibration occurs when the motion is maintained by gravitational or elastic restoring forces,
such as the swinging motion of a pendulum or the vibration of an elastic rod.

Forced vibration is caused by an external periodic or intermittent force applied to the system.
Both of these types of vibration can either be damped or undamped.

Undamped vibrations can continue indefinitely because frictional effects are neglected in the
analysis.

Since in reality both internal and external frictional forces are present, the motion of all vibrating
bodies is actually damped.

The simplest type of vibrating motion is undamped free vibration, represented by the block and

spring model shown in Fig. 12 a. -



Vibrating motion occurs when the block is released from a displaced
position x so that the spring pulls on the block.

Equilibrium
position
The block will attain a velocity such that it will proceed to move out of ——
equilibrium when x = 0, and provided the supporting surface is smooth, ..:\QQTQ(QJQ | 1
the block will oscillate back and forth. 1=
(a)
The time-dependent path of motion of the block can be determined by
applying the equation of motion to the block when it is in the displaced
position x. W =g
F=kx | ‘
The free-body diagram is shown in Fig.12b. SE T
N
The elastic restoring force F = kx is always directed toward the ®) '
equilibrium position, whereas the acceleration a is assumed to act in the Fig.12.
direction of positive displacement.
Sincea = d*x/dt®> = X, We have i B SF = ma, —ky = m

The acceleration is proportional to the block's displacement

Motion described in this manner is called simple harmonic motion. Rearranging the terms into a

"standard form™" gives )
X + wpx =10

: N k
The constant w,, is called the natural frequency, and in this case w,,= \/%



Equation 9 can also be obtained by considering the block to be suspended so that the o

displacement y is measured from the block’s equilibrium position, Fig. 13a. %k |
Equilibrrium
When the block is in equilibrium, the spring exerts an upward force of F = W § —‘Tpmilinn
Al '
= mg on the block. | v
when the block is displaced a distance y downward from this position, the magnitude - (a)
of the spring force is F = W + ky, Fig.13b.
. . . . " F=W+ k}:
Applying the equation of motion gives
+ 1= F, = ma,: —W — Ly + W = iy _rj—‘
or y + @iy =0 —~  Fig.13.
o _ _ ¥ w
Which is the same form as Eq.9 and w,, is defined by Eq.10. (b)

Equation 9 is a homogeneous, second-order, linear, differential equation with constant coefficients. It can be
shown, using the methods of differential equations, that the general solution is

x =Asinw, t+ Bcoswyt ... (11)

Here A and B represent two constants of integration. The block's velocity and acceleration are determined by
taking successive time derivatives, which yields

v =¥ = Aw, COS w,l — Bw, SN w,d  ........ (12)
a=3%=—Awlsinws — Bw’ cos oyl ........ (13)

The integration constants in Eq. 11 are generally determined from the initial conditions of the problem.
15



For example, suppose that the block in Fig.12a has been displaced a distance x; to
the right from its equilibrium position and given an initial (positive) velocity v,
directed to the right.

Substituting x = x; whent = 0into Eq. 11 yields B = x;.

And since v = v, whent = 0, using Eq. 12 we obtain 4 = —*.

Wn
Substituting these value into Eq. 11, the equation describing the motion becomes
2

.1 "
—sin w,d + Xy Cos wy
fuy,

X =

Equation 11 may also be expressed in terms of simple sinusoidal motion.
To show this, let
A=Ccosd

And B=Csiné

Equilibrium

position

k,\l "
0000 |

(a)
W =g

F=kx | l
i

I,

Fig.12.

(b)

Where C and @ are new constants to be determined in place of A and B. Substituting into Eq. 11 yields

x = Ccos ¢ sinwyd + CSIN ¢ COS w,f ke |-

1 cycle 297 = a7

And since sin(68 + @) = sinf cos® + cos @ sin @, then C

4
4
J;L i o
| 510 «fs
1

Period of time {+)
x = (Tsin (et 4 )

s, £

x = Csin(w, t + 0)

If this equation is plotted on an x versus w,,t axis, the graqu shown in Fig. 14 is obtained.

Fig.14.



o The maximum displacement of the block from its equilibrium position is defined as the amplitude
of vibration x

[ !
o From either the Figure 14 or Eq.17 the amplitude is C. i

Period of time (+) :
t x = sin (o, f -+ ob) s
o Theangle @ is called the phase angle since it represents T

the amount by which the curve is displaced from the 0

1 cycle 297 = o7 |

origin when t = 0. & Fig.14.
o We can relate these two constants to A and B using

Egs.15 and 16.
o squaring and adding these two equations, the amplitude becomes € = WV A* + B* ... (18)

. _ B
o If Eq.16isdivided by Eq. 15, the phase angle is then ¢ = tan '; ........ (19)
o Note that the sine curve, Eq. 17, completes one cycle intime t = 7 (tau) when w,,7 = 2, Or
21
abralRE (20)

o the frequency f is defined as the number of cycles completed per unit of time, which is the reciprocal of the
period; that is,

f=2=2n . (22) or _1 |k (23)

_271 2T\ m

cycle

o The frequency is expressed in cycles/s. This ratio of units is called a hertz (Hz), where 1Hz = 1
= 2mrad/s.

S



EXAMPLE

Determine the period of oscillation for the simple pendulum shown in
Fig. 15 g The bob has a mass st and is attached to a cord of length .
MNeglect the size of the bob.

SOLUTION

Free-Body Diagram. Motion of the system will be related to the
position coordinate (g =) 8, Fig. 15 5. When the bob is displaced by
a small angle &, the resroring force acting on the bob is created by the
tangential component of its weilght, »mig sin 8. Furthermore, a, acts in
the direction of iricreasirig s {(or @).

Equation of Motion. Applving the equation of motion in the
reangericial direcriorn, since it involves the restoring force, yvields

+AEF, = ma,: —rg sin & — rrer, (1)
R
",
\x\a"_f__!., ; Kinematics. a, = d°s/d¢r® = 5. Furthermore, s can be related to 8 by
LY A - the equation s = /@, so that a, = /6. Hence, Eq. 1 reduces to
o) am %sin 8 = 0 (2)
"j\ The solution of this equation involves the use of an elliptic integral.
_ For small displacernienes, however, sin £ = &, in which case
= Frrgr
(b) o
6+ %50=0 &)
Fig. 15
Comparing this equation with Eq. < (X + wjix = 0), it is seen

that w,, = VW g/f. From Eq. =zo | the period of time requiredfor the
bob to make one complete swing is therefore

2 !
= e Jru i Aris.
o)y =

This interesting result, originally discovered by Galileo Galilei
through experiment, indicates that the period depends only on the
length of the cord and not on the mass of the pendulum bob or the
angle &.

NOTE: The solution of Eq. 3 is given by Eq 11 | where w, = “ g/f
and @ is substituted for x. Like the block and spring, the constants A
and 7 in this problem can be determined if, for example, one knows
the displacement and velocity of the bob at a given instant.



EXAM P L E [

The 10-kg rectangular plate shown in Fig. 19 g is suspended at its
center from a rod having a torsional stiffness K = 1.5 N -m/rad.
Determine the natural period of vibration of the plate when it is given
a small angular displacement & in the plane of the plate.

SOLUTION
Free-Body Diagram. Fig. 16 b. Since the plate is displaced in its T=w
own plane, the torsional resroring moment created by the rod is »
M = k€. This moment acts in the direction opposite to the angular =
displacement 8. The angular acceleration & acts in the direction of — \
positive 6. //_ ke
Equation of Motion. : :
SMo = Ipas —kO8 = Io0 '
or

-- K

6+ —6=0

o

Since this equation is in the “standard form,” the natural frequency is
From the table on the inside back cover, the moment of inertia of

the plate about an axis coincident with the rod is fo = 112 mi(a® + bz)-

Hence,

o %(10 kg)[(0.2 m)? + (0.3 m)2] = 0.1083 kg - m?

The natural period of vibration is therefore,

3 & =
T = 2_71— = 24r ol 0 /S 2 w = 1.69s AArns.
w,, N & . S



