Ministry of Higher Education & Scientific Research Supervision and scientific evaluation directorate Quality assurance and academic accreditation

# Academic Program Specification Form For The Academic Year (2024-2025)

University: Northern Technical University College/Institute: College of Oil and Gas Techniques Engineering/Kirkuk Scientific Department: Renewable Energy Techniques Engineering

Deans Name:

Deans Assistant for Scientific Affairs

Head of Department

Assist.Prof. Dr.Obid Majed Ali Date:10/10/2024

Signature:

Assist.Prof. Dr.Galawish Nouri Taher Date:10/10/2024

Signature:

Assist.Prof. Dr. Naseer Tawfeeq Alwan Date:10/10/2024 Signature:

> Scanned with CS CamScanner<sup>™</sup>

The College Quality Assurance And University Performance

Manager

Maha adnan Dawood

Date:10/10/2024



### 1. **Program vision**

Excellence in the field of engineering education, learning and scientific research in all cognitive fields of renewable energy engineering according to locally and internationally approved standards and building bridges with the local community and support the economy using alternative energy sources with economic returns high.

## 2. **Program message**

- A. to divide engineering technology energy and the renewable seeks to achieve the mission of the Northern Technical University in building an educational institution capable of keeping pace with and absorbing the continuous and ongoing development of basic sciences and their various applications.:
- B. Providing the local and international private sector and the government sector with generations of engineers and workers with knowledge of the latest green energy generation technologies and the possibility of enhancing their expertise in the centers. Scientific, And research, And educational, And industrial.
- C. Providing the best educational services to students in the field of studying basic sciences for the bachelor's degree to provide them with the skills required in the specialization through educational programs in accordance with international standards..
- D. Contribute to the continuous development and updating of educational and research programs..
- E. Play an influential role in community development through training, awareness, consulting and interactive programs between the department and the community..
- F. Working to create and develop academic relations between local and regional universities through scientific and cultural exchange..
- G. Deepening national loyalty and preserving the principles of society and noble human values and Developing creative and ethical values.

## 3. **Program objectives**

The department seeks to achieve the following strategic objectives::

**<u>Firstly</u>**:General objectives:

A. Keeping pace with global developments in all scientific fields, especially in renewable energy engineering..

B. Providing society and state institutions with scientific and technical expertise in the field of renewable energy engineering. And developing its scientific, health and environmental institutions.

C. Raising the level of performance and quality to the level of advanced international universities..

secondly: Educational objectives:

<sup>1</sup>. Developing and updating scientific curricula, both theoretical and practical..

... Developing scientific competencies and performance of teachers, researchers and students.

. The department aims to adopt modern technologies in practical laboratories..

<u>**Thirdly**</u>:Scientific research objectives:

- H. Engage in graduate studies and engineering professional issues in the labor market at all levels with emphasis on continuous career development.
- I. Finding solutions to contemporary environmental problems.
- J. Understanding the study of the main causes of the negative aspects prevalent in our environment and society, studying them scientifically and finding successful treatment for them..
- K. Investing in energy research and sustainable development to develop industry in its various fields such as medical, chemical, food, and other industries..
- L. Contributing to addressing energy-related problems in Iraq(Contributing to entrepreneurial and creative projects and continuous professional development in the local community).

Fourth: Community service objectives:

A. Supporting community activities by holding scientific seminars, conferences and practical courses in various fields of energy sciences and renewable energies..

B. Cooperating with various government departments to advance the health, environmental, industrial and agricultural reality by providing scientific expertise and research results to transfer them to the ground..

C. Seeking to advance society by expanding the general horizons related to the importance of renewable energy engineering in solving many health, environmental and industrial problems..

<u>**Fifth:</u>**Student activity objectives:</u>

- <sup>1</sup>. Supporting student activities, cultural, social, sports and arts.
- ب. Knowledge, cultural and scientific exchange with other local and international universities.
- ت. Training students in our scientific, health, industrial and environmental institutions during the summer vacation.
- ن. Seeking to conclude agreements with universities and departments similar to our department inside and outside the country to send distinguished students for training and to view the scientific activity there during the summer vacation..

ε. Holding an annual scientific conference for research projects (graduation projects) and
honoring the distinguished ones among them.

## 4. **Programmatic accreditation**

Nothing

## 5. **Other external influences**

Nothing

| 6. <b>Program</b> | 6. <b>Program Structure</b> |            |                      |                               |  |  |  |  |  |  |  |
|-------------------|-----------------------------|------------|----------------------|-------------------------------|--|--|--|--|--|--|--|
| Comments *        | Percentage                  | Study unit | Number of<br>courses | Program Structure             |  |  |  |  |  |  |  |
| Basic course      | 9.583%                      | 23         | 9                    | Institutional<br>Requirements |  |  |  |  |  |  |  |
| Basic course      | 21.25%                      | 51         | 8                    | College<br>Requirements       |  |  |  |  |  |  |  |
| Basic course      | 69.166%                     | 166        | 27                   | Department<br>Requirements    |  |  |  |  |  |  |  |
|                   |                             |            | There is             | Summer training               |  |  |  |  |  |  |  |
|                   |                             |            |                      | Other                         |  |  |  |  |  |  |  |

\* Notes may include whether the course is basic or optional.

| 7. Program Description                          |             |  |  |             |  |  |  |  |
|-------------------------------------------------|-------------|--|--|-------------|--|--|--|--|
| Credit hours Course name Course code Year/Level |             |  |  |             |  |  |  |  |
|                                                 | theoretical |  |  | 2023-2024 / |  |  |  |  |

|          | Graduation Requirements |                                   |      |     |       |       |         |      |       |  |  |
|----------|-------------------------|-----------------------------------|------|-----|-------|-------|---------|------|-------|--|--|
| Level 1: |                         |                                   |      |     |       |       |         |      |       |  |  |
|          | Subject code            |                                   |      |     |       | Weekl | y hours |      |       |  |  |
| No.      | Subject code            | Subject                           | ECTS | CL. | Lect. | Lab.  | Pr.     | Tut. | Semn. |  |  |
| 1        | NTU 101                 | English Language                  | 2.00 | 2   |       |       |         |      |       |  |  |
| 2        | RETE 100                | Mechanics<br>Engineering / Static | 7.00 | 3   |       |       |         | 2    |       |  |  |
| 3        | COGTEK 100              | Mathematics<br>Principles         | 7.00 | 3   |       |       |         | 2    |       |  |  |
| 4        | RETE 102                | Electrical<br>Technology          | 6.00 | 2   |       | 2     |         | 1    |       |  |  |
| 5        | RETE 103                | Workshop                          | 6.00 |     |       | 6     |         |      |       |  |  |
| 6        | NTU 100                 | Human Rights &<br>Democracy       | 2:00 | 2   |       |       |         |      |       |  |  |
| 7        | RETE 104                | Thermodynamics'<br>Principles     | 9.00 | 3   |       | 2     |         | 2    |       |  |  |
| 8        | NTU 102                 | Computer                          | 3.00 | 1   |       | 1     |         |      |       |  |  |
| 9        | RETE 101                | Eng. Mechanics/<br>Dynamics       | 8.00 | 3   |       |       |         | 2    |       |  |  |
| 10       | COGTEK 101              | Engineering<br>Drawing            | 8.00 | 1   |       | 3     |         |      |       |  |  |
| 11       | NTU 103                 | Arabic Language                   | 2.00 | 2   |       |       |         |      |       |  |  |

|              | Graduation Requirements              |                 |      |     |       |      |     |      |       |  |  |
|--------------|--------------------------------------|-----------------|------|-----|-------|------|-----|------|-------|--|--|
| Level 2      |                                      |                 |      |     |       |      |     |      |       |  |  |
| Weekly hours |                                      |                 |      |     |       |      |     |      |       |  |  |
| No.          | Subject code                         | Subject         | ECTS | CL. | Lect. | Lab. | Pr. | Tut. | Semn. |  |  |
| 1            | COGTEK 200                           | Fluid Mechanics | 7.00 | 3   |       | 2    |     | 1    |       |  |  |
| 2            | COGTEK 201                           | Mathematics     | 7.00 | 3   |       |      |     | 2    |       |  |  |
| 3            | RETE 200                             | Electronics     | 7.00 | 3   |       | 2    |     | 1    |       |  |  |
| 4            | 4 RETE 201 Mechanical 5.00 1 Drawing |                 |      |     |       |      |     |      |       |  |  |

| 5  | NTU 200  | Baath Crimes                                      | 2.00 | 2 |   |   |  |
|----|----------|---------------------------------------------------|------|---|---|---|--|
| 6  | NTU 201  | English Language                                  | 2.00 | 2 |   |   |  |
| 7  | RETE 202 | Strength of<br>Materials                          | 6.00 | 3 | 2 | 1 |  |
| 8  | RETE 203 | Electronics circuits                              | 6.00 | 3 | 2 | 1 |  |
| 9  | RETE 204 | Refrigeration & Air<br>Conditioning<br>Principles | 5.00 | 2 | 2 |   |  |
| 10 | RETE 205 | Electric machines                                 | 5.00 | 2 | 2 | 1 |  |
| 11 | NTU 202  | Computer                                          | 2.00 | 1 | 1 |   |  |
| 12 | NTU 203  | Arabic Language                                   |      | 2 |   |   |  |

|     |              | Graduat                                                   | tion Requir | ements |        |       |     |      |      |  |
|-----|--------------|-----------------------------------------------------------|-------------|--------|--------|-------|-----|------|------|--|
|     | Level 3:     |                                                           |             |        |        |       |     |      |      |  |
|     |              |                                                           |             |        | Weekly | hours |     |      |      |  |
| No. | Subject code | Subject                                                   | ECTS        | CL.    | Lect.  | Lab.  | Pr. | Tut. | Semn |  |
| 1   | RETE 300     | Conduction and<br>radiation heat<br>transfer              | 7.00        | 3      |        | 2     |     | 1    |      |  |
| 2   | COGTEK 300   | Engineering<br>Analysis                                   | 6.00        | 2      |        | 1     |     | 1    |      |  |
| 3   | RETE 302     | Renewable Energy<br>Systems                               | 6.00        | 2      |        | 2     |     |      | 1    |  |
| 4   | RETE 303     | Power electronics                                         | 5.00        | 2      |        | 2     |     |      |      |  |
| 5   | RETE 304     | Gas dynamics                                              | 6.00        | 2      |        | 2     |     |      |      |  |
| 6   | RETE 305     | Solar Energy<br>Engineering                               | 6.00        | 2      |        | 2     |     | 1    |      |  |
| 7   | RETE 306     | Biofuel                                                   | 5.00        | 2      |        | 2     |     |      | 1    |  |
| 8   | RETE 301     | Convection heat<br>transfer, and heat<br>exchanger design | 7.00        | 3      |        | 2     |     | 1    |      |  |
| 9   | RETE 307     | Combustion and<br>Pollution<br>Engineering                | 6.00        | 2      |        | 1     |     | 1    |      |  |
| 10  | COGTEK 301   | Numerical Analysis                                        | 6.00        | 2      |        | 2     |     | 1    |      |  |

| Graduation Requirements |
|-------------------------|
|                         |

|     |              |                                                                                | Level 4: |              |       |      |     |      |       |
|-----|--------------|--------------------------------------------------------------------------------|----------|--------------|-------|------|-----|------|-------|
|     | Subject code |                                                                                |          | Weekly hours |       |      |     |      |       |
| No. | Subject code | Subject                                                                        | ECTS     | CL.          | Lect. | Lab. | Pr. | Tut. | Semn. |
| 1   | RETE 400     | Wind energy                                                                    | 5.00     | 2            |       | 2    |     |      | 1     |
| 2   | RETE 401     | Solar Photovoltaic<br>Conversion                                               | 5.00     | 2            |       | 2    |     |      | 1     |
| 3   | RETE 402     | Simulation of<br>renewable energy<br>systems                                   | 6.00     | 2            |       | 2    |     | 1    |       |
| 4   | COGTEK 400   | Engineering<br>projects<br>management and<br>its risks                         | 4.00     | 2            |       |      |     | 1    | 1     |
| 5   | RETE 404     | Power Plants                                                                   | 5.00     | 2            |       | 2    |     |      | 1     |
| 6   | NTU 400      | Methodology of<br>Scientific Research                                          | 5.00     | 2            |       |      |     |      | 1     |
| 7   | RETE 405     | Design of solar<br>renewable systems                                           | 6.00     | 2            |       | 2    |     |      | 1     |
| 8   | RETE 406     | Store and recover<br>Energies                                                  | 5.00     | 2            |       | 2    |     |      |       |
| 9   | RETE 407     | Control systems                                                                | 5.00     | 2            |       | 2    |     |      |       |
| 10  | RETE 403     | Computer-based<br>modeling and<br>simulation of<br>renewable energy<br>systems | 8.00     | 2            |       | 4    |     |      |       |
| 11  | COGTEK 401   | Graduation Project                                                             | 6.00     | 1            |       |      | 3   |      | 1     |

| 8. Expect | ed learning outcomes of the program                                           |  |  |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Knowledge |                                                                               |  |  |  |  |  |  |  |  |
|           | A- Cognitive objectives.                                                      |  |  |  |  |  |  |  |  |
|           | 1- Keeping pace with global developments in all scientific fields, especially |  |  |  |  |  |  |  |  |
|           | in renewable energy engineering.                                              |  |  |  |  |  |  |  |  |
|           | 2- To provide students with an understanding of the engineering principles    |  |  |  |  |  |  |  |  |
|           | of renewable energy technology engineering.                                   |  |  |  |  |  |  |  |  |
|           | 3- Enabling students to gain knowledge and understanding in working on        |  |  |  |  |  |  |  |  |
|           | modern renewable energy systems and in analyzing programs related to those    |  |  |  |  |  |  |  |  |
|           | systems.                                                                      |  |  |  |  |  |  |  |  |
|           | 4- Enabling students to gain knowledge and understanding of                   |  |  |  |  |  |  |  |  |
|           | troubleshooting and maintenance of various renewable energy devices.          |  |  |  |  |  |  |  |  |

|        | 5- Enabling the student to analyze and design renewable energy systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skills |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | <ul> <li>for-Skill objectives of the program:</li> <li>1 - Explaining the topics of the foundations of renewable energy engineering by specialists in the subject, with emphasis on using mathematics as a basis for understanding and learning.</li> <li>2- Provide them with skills to solve practical problems related to power generation systems.</li> <li>3- Introducing the student to the basics of renewable energy generation.</li> <li>4- The focus is on the topics of designing, analyzing, developing and controlling industrial systems using control systems.</li> </ul>        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Values |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | <ul> <li>C- Emotional and value-based goals:</li> <li>1- Enabling students to think and analyze topics related to the engineering framework, such as various electrical circuits, electrical power transmission systems, and programmable control systems in the field of industrial application of renewable energy.</li> <li>2- Enabling students to think and analyze topics related to computer systems related to the engineering framework.</li> <li>3- Enable students to think and analyze topics related to solving practical problems related to renewable energy systems.</li> </ul> |

## 9. Teaching and learning strategies

1- Explaining engineering theories related to the field of generation and transmission of electrical power.

2- Forming discussion groups during or outside lectures to discuss scientific engineering topics that require thinking and analysis.

3- Providing students with the basics and additional topics related to the previous learning outcomes of skills to solve practical problems.

4- Solving a set of practical examples by academic staff specialized in the field of renewable energy engineering

5- Assigning students homework on complex problems in preparation for moving on to the stage of solving practical problems.

6- During the lecture, students participate in solving some practical problems.

7- The department's scientific laboratories are supervised by academic staff specialized in renewable energy engineering.

### 10. Evaluation methods

- 1- Asking surprise questions to students in the classroom on topics that have been previously explained as a prelude to explaining advanced topics.
- 2- Daily exams with questions related to practical problems.
- 3- Participation scores for competitive questions among students.
- 4- Setting grades for scientific projects assigned to the student.
- 5- Grading homework and reports the student is responsible for it.
- 6- Semester exams for the curriculum in addition to the mid-year exam and the final exam.
- 7- Active participation in the classroom is evidence of the student's commitment and responsibility..
- 8- Commitment to the deadline for submitting the required assignments and reports from the student.
- 9- Midterm and final exams reflect the student's commitment, knowledge and skill achievement..

| 11. <b>Facu</b>     | 11. Faculty |                     |                                   |                                            |                                               |                     |  |  |  |  |
|---------------------|-------------|---------------------|-----------------------------------|--------------------------------------------|-----------------------------------------------|---------------------|--|--|--|--|
| Faculty members     |             |                     |                                   |                                            |                                               |                     |  |  |  |  |
| Faculty preparation |             | Sj<br>requirem<br>a | pecial<br>ents/skills (if<br>any) | Specialization                             |                                               | Academic Rank       |  |  |  |  |
| lecturer            | angel       |                     |                                   | private                                    | general                                       |                     |  |  |  |  |
|                     | angel       |                     |                                   | Thermal<br>energy/r<br>enewabl<br>e energy | theengi<br>neering<br>theMec<br>hanics<br>And | assistant professor |  |  |  |  |
|                     | angel       |                     |                                   | Biochem<br>istry                           | science<br>s                                  | assistant professor |  |  |  |  |
|                     | angel       |                     |                                   | Thermals                                   | Mecha<br>nical<br>Engine<br>ering             | Teacher             |  |  |  |  |
|                     | angel       |                     |                                   | Electroni<br>cs                            | Electri<br>cal and<br>Electro<br>nic          | Assistant Professor |  |  |  |  |

|       |  |                                 | Engine<br>ering                   |                     |
|-------|--|---------------------------------|-----------------------------------|---------------------|
| angel |  | Thermals                        | Mecha<br>nical<br>Engine<br>ering | Assistant Professor |
| angel |  | Geometr<br>y<br>Engineer<br>ing | Geolog<br>y                       | Assistant Professor |
| angel |  | mathema<br>tics                 | Mathe<br>matics<br>educati<br>on  | Assistant Professor |
| angel |  | mathema<br>tics                 | science<br>smathe<br>matics       | Assistant Professor |
| angel |  | Thermals                        | Fuel<br>and<br>energy             | Assistant Professor |
| angel |  | Materials<br>Physics            | physics                           | Assistant Professor |
| angel |  | law                             | law                               | Assistant Professor |
| angel |  | Literatur<br>e                  | Arabic                            | Assistant Professor |

### Professional development

#### Orientation of new faculty members

Through seminars, workshops and conference attendance

#### Professional development for faculty members

Through conferences, seminars, discussion groups and the attendance of faculty members at postgraduate discussions.

## 12. Acceptance Criteria

- AccreditationAdmission requirements for students according to the regulations of the Ministry of Higher Education and Scientific Research (Central Admission)
- > passingPersonal interview for the department.
- thatBe fit for medical examination.
- > an averageGraduation from middle school.
- EnergyDepartment capacity.

### 13. The most important sources of information about the program

- $\blacktriangleright$  Needs the market.
- ➤ Trends local to the governorate.
- > Studies and questionnaires.

## 14. Program development plan

- In-country training courses
- Training courses outside Diameter

|    | Program Skills Chart                      |      |    |    |           |      |    |    |           |    |    |           |                                     |                 |                     |
|----|-------------------------------------------|------|----|----|-----------|------|----|----|-----------|----|----|-----------|-------------------------------------|-----------------|---------------------|
|    | Required learning outcomes of the program |      |    |    |           |      |    |    |           |    |    |           |                                     |                 |                     |
|    | Va                                        | lues |    |    | Sk        | ills |    |    | Knowledge |    |    | Basic or  | Course name                         | Course code     | Year/Level          |
| A4 | A3                                        | A2   | A1 | B4 | <b>B3</b> | B2   | B1 | A4 | A3        | A2 | A1 | Selective |                                     |                 |                     |
| *  | *                                         | *    | *  | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | English language                    | NTU 101         |                     |
|    |                                           |      |    | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Engineering/static mechanics        | <b>RETE 100</b> |                     |
|    |                                           |      |    | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Principles of mathematics           | COGTEK<br>100   |                     |
|    |                                           |      |    | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Electrical Technology               | RETE 102        |                     |
|    |                                           |      |    | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Laboratories                        | RETE 103        |                     |
|    |                                           |      |    | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Human rights and democracy          | NTU 100         | 2023-2024/<br>First |
|    |                                           |      |    | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Thermodynamics                      | RETE 104        | 1 1150              |
| *  | *                                         | *    | *  | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Computer                            | NTU 102         |                     |
|    |                                           |      |    | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Engineering<br>Mechanics/Kinematics | RETE 101        |                     |
|    |                                           |      |    | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Engineering drawing                 | COGTEK<br>101   |                     |
| *  | *                                         | *    | *  | *  | *         | *    | *  | *  | *         | *  | *  | Basic     | Arabic                              | NTU 103         |                     |

|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Fluid mechanics                                        | COGTEK<br>200   |            |
|---|---|---|---|---|---|---|---|---|---|---|---|-------|--------------------------------------------------------|-----------------|------------|
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | mathematics                                            | COGTEK<br>201   |            |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Electronics                                            | <b>RETE 200</b> |            |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | mechanical drawing                                     | <b>RETE 201</b> |            |
| * | * | * | * | * | * | * | * | * | * | * | * | Basic | Baath Party Crimes                                     | NTU 200         |            |
| * | * | * | * | * | * | * | * | * | * | * | * | Basic | English language                                       | NTU 201         | 2024-2025/ |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | material resistance                                    | <b>RETE 202</b> | Second     |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Electronic circuits                                    | <b>RETE 203</b> |            |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Principles of<br>refrigeration and air<br>conditioning | RETE 204        |            |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Electrical machines                                    | <b>RETE 205</b> |            |
| * | * | * | * | * | * | * | * | * | * | * | * | Basic | Computer                                               | NTU 202         |            |
| * | * | * | * | * | * | * | * | * | * | * | * | Basic | Arabic                                                 | NTU 203         |            |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Heat transfer by conduction and radiation              | RETE 300        | 2025-      |

|  |  | * | * | * | * | * | * | * | * | Basic | Engineering analysis                                  | COGTEK<br>300   | 2026/Third |
|--|--|---|---|---|---|---|---|---|---|-------|-------------------------------------------------------|-----------------|------------|
|  |  | * | * | * | * | * | * | * | * | Basic | Renewable energy systems                              | RETE 302        |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Power electronics                                     | RETE 303        |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Gas dynamics                                          | <b>RETE 304</b> |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Solar energy<br>engineering                           | RETE 305        |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Biofuel                                               | RETE 306        |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Convection heat<br>transfer, heat exchanger<br>design | <b>RETE 301</b> |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Combustion and<br>Pollution Engineering               | RETE 307        |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Numerical analysis                                    | COGTEK<br>301   |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Wind energy                                           | <b>RETE 400</b> |            |
|  |  | * | * | * | * | * | * | * | * | Basic | Photovoltaic energy conversion                        | <b>RETE 401</b> | 2026-2027/ |
|  |  | * | * | * | * | * | * | * | * | Basic | Renewable energy systems simulation                   | RETE 402        | Fourth     |
|  |  | * | * | * | * | * | * | * | * | Basic | Engineering Project<br>Management and Risks           | COGTEK<br>400   |            |

|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Power plants                                                                 | <b>RETE 404</b> |
|---|---|---|---|---|---|---|---|---|---|---|---|-------|------------------------------------------------------------------------------|-----------------|
| * | * | * | * | * | * | * | * | * | * | * | * | Basic | Scientific research<br>methodology                                           | NTU 400         |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Renewable energy systems design                                              | RETE 405        |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Energy storage and<br>recovery                                               | <b>RETE 406</b> |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Control systems                                                              | <b>RETE 407</b> |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Modeling and<br>simulation of renewable<br>energy systems using<br>computers | RETE 403        |
|   |   |   |   | * | * | * | * | * | * | * | * | Basic | Graduation project                                                           | COGTEK<br>401   |

• Please tick the boxes corresponding to the individual learning outcomes of the programme being assessed.

# **Course Description**

# Level 1

|                          | Module 1<br>Subject information |                  |            |                    |                                                       |  |  |  |  |  |  |  |
|--------------------------|---------------------------------|------------------|------------|--------------------|-------------------------------------------------------|--|--|--|--|--|--|--|
| Module Title             | ]                               | English Language | :          | Modu               | Module Delivery                                       |  |  |  |  |  |  |  |
| Module Type              |                                 | Basic            |            |                    |                                                       |  |  |  |  |  |  |  |
| Module Code              |                                 | NTU 101          |            |                    | □Lecture                                              |  |  |  |  |  |  |  |
| ECTS Credits             |                                 | 2                |            |                    | □Lab                                                  |  |  |  |  |  |  |  |
|                          |                                 |                  |            | □Tutorial          |                                                       |  |  |  |  |  |  |  |
| SWL (hr/sem)             |                                 | 50               |            |                    | □Practical                                            |  |  |  |  |  |  |  |
|                          |                                 | -                |            |                    | □Seminar                                              |  |  |  |  |  |  |  |
| Module Level             |                                 | UGx11 1          | f Deliver  | Delivery 1         |                                                       |  |  |  |  |  |  |  |
| Administering De         | epartment                       | RETE             | College    | College<br>Enginee | College of Oil & Gas Techniques<br>Engineering/Kirkuk |  |  |  |  |  |  |  |
| Module Leader            | Noor Saad Ab                    | d aljaleel       | e-mail     | noor.sa            | noor.saad23@ntu.edu.iq                                |  |  |  |  |  |  |  |
| Module Leader's          | Acad. Title                     | Assist. Lecture  | Module Lea | ader's Q           | der's Qualification MSc                               |  |  |  |  |  |  |  |
| Module Tutor             |                                 |                  | e-mail     |                    |                                                       |  |  |  |  |  |  |  |
| Peer Reviewer Na         | ame                             | Name             | e-mail     | Email              |                                                       |  |  |  |  |  |  |  |
| Scientific Commi<br>Date | ttee Approval                   | 06/01/2023       | Version Nu | mber               | <b>iber</b> 1.0                                       |  |  |  |  |  |  |  |

| <b>Relation with other Modules</b> |      |          |  |  |  |  |  |  |  |  |
|------------------------------------|------|----------|--|--|--|--|--|--|--|--|
| Prerequisite module                | None | Semester |  |  |  |  |  |  |  |  |
| Co-requisites module               | None | Semester |  |  |  |  |  |  |  |  |

| Module                      | Aims, Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                             | <ol> <li>To develop problem solving skills and understanding of circuit theory<br/>through the application of techniques.</li> </ol>                                                                                                                                                          |  |  |  |  |  |  |
|                             | <ol> <li>Developing strategies to produce more coherent writing and to make clear<br/>appropriate, and relevant notes from academic texts.</li> </ol>                                                                                                                                         |  |  |  |  |  |  |
| Module Objectives           | <ol> <li>Encouraging them to adopt diverse approaches for dealing with new<br/>unknown vocabulary by practicing effective use for dictionaries and through<br/>making effective vocabulary records.</li> </ol>                                                                                |  |  |  |  |  |  |
|                             | 4. Exploring and evaluating research technologies and resources and crediting source information.                                                                                                                                                                                             |  |  |  |  |  |  |
|                             | 5. Promoting learner independence by encouraging students to return to earlier study skills to refresh their memories or see how new skills build on and develop those previously presented.                                                                                                  |  |  |  |  |  |  |
|                             | 1. Students will identify topics and formulate questions.                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                             | 2. Identify appropriate methods and sources for research                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                             | 3. engage ethically with sources.                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                             | 4. Oral Communication.                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                             | 5. Identify literary techniques and creative uses of language in literary texts.                                                                                                                                                                                                              |  |  |  |  |  |  |
| Module Learning<br>Outcomes | 6. Adapt their texts to particular audiences and purposes                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                             | <ol> <li>Apply relevant theoretical concepts to literary or other texts and practices</li> <li>Describe their own writing practices and how they have evolved</li> <li>Plan, structure and give a presentation in English using a stock of typical phrases and visuals effectively</li> </ol> |  |  |  |  |  |  |
|                             | 10. Use appropriate strategies for asking and responding to questions, as well as summarizing speaker's ideas during the Q&A sessions                                                                                                                                                         |  |  |  |  |  |  |
|                             | 11. Use appropriate language for managing and participating in a round-table discussion                                                                                                                                                                                                       |  |  |  |  |  |  |
|                             | 12. Prepare for and take part in a panel discussion as a panelist                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                             | Indicative content includes the following.                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Indicative Contents         | It is often seen as a relatively formal and complex English language that conveys ideas<br>in an accurate and objective manner. It is generally known to include the basic skills<br>of literary analysis, adherence to repositories, synthesis of associated scholars, and the               |  |  |  |  |  |  |
|                             | ability to critically evaluate. Basic academic vocabulary, phrases, and grammatical                                                                                                                                                                                                           |  |  |  |  |  |  |

| complexity are often used in academic dialogue and texts. Specifically, academic<br>English refers to words and practices that are not necessarily common or frequently<br>encountered in informal conversations and circumstances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Student life Reading: who to read ways of reading, methods reading, punctuation: capital letters, full stop, and question mark, linking idea: and but joints sentence, Rules: present simple, checking your writing, error in spelling, capital letters, punctuation and grammar.</li> <li>Daily routine, reading: working and stress, predicting content: using picture in a text, Writing: routine and procedure, Hand writing: making hand written work clear and easy to read, paragraph: block and intended styles linking idea: sequencing word, first, after, then, finally. finally</li> <li>People and the environment, Reading: weather, Scanning: using headings, meaning from context: guessing the meaning from the new word, Writing: describing our lives, punctuation: apostrophes, rules: talking about frequency,</li> <li>Architecture reading: famous building, making notes: notes from study, intensive reading lebeling diagram.</li> </ol> |
| intensive reading labeling diagram, <b>Research</b> : finding information, asking your self question, <b>linking idea</b> : expressing reason, because, express result, so, <b>word and phrases</b> : language to describe building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li><u>5-</u> Education, reading: universities, predicting content: using the title and the first few sentences, linking ideas: expressing contrast – however, writing: formal letters and emails, greetings and endings: dear, yours, word and phrases: languages for letters and emails</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>6-</u> <b>Technology, reading:</b> invention, <b>getting information from website</b> :<br>skimming and scanning to find useful information, <b>using visual in web sites</b> :<br>getting extra information from diagram and pictures, <b>Writing definition</b> :<br>using which or that to describe things, giving examples: supporting definition<br>with example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li><u>7-</u> Food drink and culture, reading: food from other countries, topic sentence:<br/>using topic sentence to help understanding, writer opinion: identifying writer<br/>opinion, punctuation: commas, linking ideas, in addition and, using<br/>pronouns: avoiding repetition.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li><u>8-</u> Cites of the world, reading: city life, looking at data: table, chart, &amp; graph, getting facts from text: using heading to help your information, rules: comparatives and superlatives, linking ideas: using relative pronouns which and where.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li><u>9-</u> Brain power, reading: a healthy brain, in other word: using pronouns and synonyms to avoid repetition, making notes: organizing notes, common mistake: typical grammar rules, summaries: summarizing the main point of a text</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| <u>10-</u> Staying alive, reading: dangerous disease of our time, using what you |
|----------------------------------------------------------------------------------|
| know: using your own knowledge to help you understand a text, using a            |
| reference to understand a text: pronouns .adjective ,adverb                      |
|                                                                                  |
|                                                                                  |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this module<br>is to encourage students' participation in the exercises, while at the same time refining<br>and expanding their critical thinking skills. This will be achieved through classes,<br>interactive tutorials and by considering types of simple experiments involving some<br>sampling activities that are interesting to the students. |  |  |  |  |  |  |  |  |

| Student Workload (SWL)<br>The student's academic load is calculated for 15 weeks. |    |                                                           |                  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----|-----------------------------------------------------------|------------------|--|--|--|--|--|--|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester             | 33 | Structured SWL (h/w)<br>Regular weekly student load       | (33/15) =2.2     |  |  |  |  |  |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester         | 17 | Unstructured SWL (h/w)<br>Irregular student load per week | (18/15)=1.1<br>3 |  |  |  |  |  |  |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester     |    | 50                                                        |                  |  |  |  |  |  |  |  |

| Module Evaluation |             |                |              |                              |  |  |  |  |  |  |
|-------------------|-------------|----------------|--------------|------------------------------|--|--|--|--|--|--|
|                   | Time/Number | Weight (Marks) | Week Due     | Relevant Learning<br>Outcome |  |  |  |  |  |  |
| Quizzes           | 3           | 15% (15)       | 5, 8, and 10 | LO #3 and #6, #13            |  |  |  |  |  |  |

| Formative        | Assignments  | 3                | 15% (15) | 4,6, 8,10,<br>and 12 | LO #5,7, 9, 11, and #13 |
|------------------|--------------|------------------|----------|----------------------|-------------------------|
| assessment       | Projects     |                  |          |                      |                         |
|                  | Seminar      | 1                | 10% (10) | 13                   | LO #8                   |
| Summative        | Midterm Exam | 1hr              | 10% (10) | 7                    | LO #9                   |
| assessment       | Final Exam   | 3 hours          | 50% (50) | 16                   | All                     |
| Total assessment |              | 100% (100 Marks) |          |                      |                         |

|         | Delivery Plan (Weekly Syllabus)                                                         |
|---------|-----------------------------------------------------------------------------------------|
|         | Material Covered                                                                        |
| Week 1  | Introduction to the academic English                                                    |
|         | Student life                                                                            |
| Week 2  | Reading Skills, way of reading.                                                         |
|         |                                                                                         |
|         | Student life                                                                            |
| Week 3  | Writing skills punctuation, linking idea. Checking your writing, Writing about people.  |
|         | vocabulary development., part of speech, A dictionary you're writing about people       |
| Week 4  | Daily Routine                                                                           |
|         | Reading Skills predicting content, skimming                                             |
|         | Daily Routine                                                                           |
| Week 5  | Writing skill shand writing, paragraph .linking idea .writing about routine & procedure |
|         | Vocabulary development, colocation jobs ending - in or er ist                           |
| Week 6  | People & the environment                                                                |
| , cen o | Reading skills scanning using headings meaning from context                             |

|          | Decale & the environment                                                                         |
|----------|--------------------------------------------------------------------------------------------------|
|          | People & the environment                                                                         |
| Week 7   | Writing skills punctuation talking about frequency of writing about study habits                 |
|          |                                                                                                  |
|          | Research sources                                                                                 |
|          | Architecture                                                                                     |
| Week 8   | Reading skills making notes                                                                      |
| VV COR O | Teacing skins making notes                                                                       |
|          | Research focusing your search                                                                    |
|          | Architecture                                                                                     |
| Week 9   | Writing skills linking idea word & phrases writing about building                                |
|          |                                                                                                  |
|          | Vocabulary development Dictionary entry countable and uncountable nouns                          |
|          | Educations                                                                                       |
|          | Reading skills predicting content linking idea                                                   |
| Week 10  | Writing shills anothing and an ding in formal latters much and alwages multing a latter or email |
|          | writing skins greeting and ending in formal letters word and phrases writing a letter of eman    |
|          | Vocabulary developments plurals                                                                  |
|          | Technology                                                                                       |
|          | Peading skills getting information from web site using visual in websites                        |
|          | Reading skins getting information from web site using visual in websites                         |
| Week 11  | Writing skills writing definition giving example writing a description for a device              |
|          | Vocabulary development Homophones                                                                |
|          |                                                                                                  |
|          | Research websites                                                                                |
|          | Food drink and culture                                                                           |
|          | Reading skills topic sentence writing opinion                                                    |
| Week 12  |                                                                                                  |
|          | Writing skills punctuation linking ideas using pronouns writing about food and drink             |
|          | Vocabulary development prefixes                                                                  |
| Week 13  | Cites of the word                                                                                |
| WUR 15   |                                                                                                  |

|         | Reading skills looking at data getting facts from text                                    |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------|--|--|--|--|
|         | Writing skills comparatives and superlatives linking idea writing about cites             |  |  |  |  |
|         | Research finding facts and figure                                                         |  |  |  |  |
|         | Vocabulary development word attack skills                                                 |  |  |  |  |
|         | Brain power                                                                               |  |  |  |  |
| Wook 14 | Reading skills in other words making notes                                                |  |  |  |  |
| WEEK 14 | Writing skills common mistake summaries writing a summary                                 |  |  |  |  |
|         | Research books                                                                            |  |  |  |  |
|         | Staying alive                                                                             |  |  |  |  |
| Week 15 | Reading skills using what you know using reference to understand text focusing on statics |  |  |  |  |
| Week 15 | Writing skills linking ideas word and phrases writing about statics                       |  |  |  |  |
|         | Vocabulary development word or figures learning a words synonyms and anatomy              |  |  |  |  |
| Week 16 | Preparatory week before the final exam                                                    |  |  |  |  |

| Learning and Teaching Resources |                                                                                                                                                                                                            |                           |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                                                                                                                                                                       | Available in the Library? |  |  |
| Required Texts                  | <ul> <li>[1] R. Harrison,academic skills Level 1 students books.<br/>UK: Oxford, 2011.</li> <li>[2] John and Liz Soar. (New Headway Beginner) 4th<br/>edition. Oxford: Oxford University Press.</li> </ul> | Yes                       |  |  |
| Recommended<br>Texts            |                                                                                                                                                                                                            |                           |  |  |
| Websites                        |                                                                                                                                                                                                            |                           |  |  |

| Module 2<br>Subject information       |       |                 |                                                       |                               |            |  |  |
|---------------------------------------|-------|-----------------|-------------------------------------------------------|-------------------------------|------------|--|--|
| Module Title                          | Mecha | /static         | Modu                                                  | lle Delivery                  |            |  |  |
| Module Type                           |       | Core            |                                                       |                               | ⊠Theory    |  |  |
| Module Code                           |       | <b>RETE 100</b> |                                                       |                               | □Lecture   |  |  |
| ECTS Credits                          |       |                 |                                                       | 🗆 Lab                         |            |  |  |
|                                       |       |                 |                                                       |                               | ⊠Tutorial  |  |  |
| SWL (hr/sem)                          |       | 175             |                                                       |                               | □Practical |  |  |
|                                       |       |                 |                                                       |                               |            |  |  |
| Module Level                          |       | UGx11 1         | Semester of Delivery 1                                |                               | 1          |  |  |
| Administering Department              |       | RETE            | College of Oil & Gas Techniques<br>Engineering/Kirkuk |                               | chniques   |  |  |
| Module Leader                         |       |                 | e-mail                                                |                               |            |  |  |
| Module Leader's Acad. Title           |       |                 | Module Lea                                            | Module Leader's Qualification |            |  |  |
| Module Tutor                          |       |                 | e-mail                                                | e-mail                        |            |  |  |
| Peer Reviewer Name                    |       | Name            | e-mail                                                | Email                         |            |  |  |
| Scientific Committee Approval<br>Date |       | 06/01/2023      | Version Nu                                            | Jumber 1.0                    |            |  |  |

| <b>Relation with other Modules</b> |      |          |  |  |  |
|------------------------------------|------|----------|--|--|--|
| Prerequisite module                | None | Semester |  |  |  |
| Co-requisites module               | None | Semester |  |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                            |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| Cours                                                  | conjectives, rearining outcomes and guiding content                        |  |  |  |
| Module Aims                                            |                                                                            |  |  |  |
|                                                        | 1. To develop problem solving skills and understanding of mechanics theory |  |  |  |
| Subject objectives                                     | through the application of techniques.                                     |  |  |  |
|                                                        | 2. To understand Force, Moment and Couple from a given machine.            |  |  |  |
|                                                        | 3. Covers the fundamentals of mechanics and mechanical machine components. |  |  |  |

|                             | 4. To understand friction and equilibrium problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | 5. To calculate centroids and moments of inertia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Module Learning<br>Outcomes | <ol> <li>Explain the principles of static equilibrium.</li> <li>Recognize how mechanics work in mechanical machines.</li> <li>Describe force, moment, and couple.</li> <li>Solve problems related to the forces in truss members using the method of joints and the method of sections.</li> <li>Identify types of forces.</li> <li>Define types of friction.</li> <li>Use Free Body Diagrams to solve static problems involving components and pulley systems.</li> <li>Explain the concept of equilibrium used in problem-solving.</li> <li>Solve problems related to work and balance.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Indicative Contents         | <ul> <li>Indicative content includes the following.</li> <li>Mechanics: is the physical science that deals with the effects of forces on objects.</li> <li>Branches of Mechanics: Statics, Dynamics, Strength of Materials.</li> <li>Statics: is the study of rigid bodies that are in equilibrium.</li> <li>Two kinds of quantities are used in engineering mechanics: A scalar quantity has only magnitude (mass, time, temperature, etc.). A vector quantity has both magnitude and direction (force, velocity, etc.).</li> <li>Rigid Body: a body is considered rigid when the changes in distance between any two of its points are negligible under any condition.</li> <li>External Force: When a force is applied to a body, it is called an external force.</li> <li>Internal Force: the resistance to deformation or change of shape exerted by the material of a body is called an internal force.</li> <li>Collinear Forces: forces whose lines of action pass through a common point are called concurrent forces.</li> <li>Resultant: a single force that can replace two or more forces and produce the same effect on the body as all the forces combined. The results of these two forces can be determined analytically or graphically.</li> <li>When a body moves or tends to move over another body, a force opposing the motion develops at the contact surfaces. This force, which opposes the</li> </ul> |
|                             | <ul> <li>when a body moves or tends to move over another body, a force opposing the<br/>motion develops at the contact surfaces. This force, which opposes the<br/>movement or the tendency of movement, is called Frictional Force or Friction.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|            | Learning and Teaching Strategies                                                                                                                                                                                                                               |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | • Clearly define the learning objectives for the unit. Students should understand what they are expected to learn and achieve by the end of the unit.                                                                                                          |
|            | • Promote active learning by engaging students in hands-on activities, problem-<br>solving exercises, and group discussions. This helps students actively<br>participate in the learning process and enhances their understanding of<br>mathematical concepts. |
| Strategies | • Support Learning: Build the unit in a way that builds on previously learned concepts. Start with foundational topics and gradually progress to more complex ideas. Provide clear explanations and examples to support students' understanding at each stage. |
|            | • Link mathematical concepts to real-life applications to demonstrate their relevance and practicality. Show students how mathematics is used in various fields and professions, which will enhance their appreciation of the subject.                         |
|            | • Utilize technology tools and resources to enhance the teaching and learning experience. Interactive software, online simulations, graphing calculators, and educational apps can help students visualize and explore mathematical concepts.                  |

| Student Workload (SWI)                                                        |     |                                                           |     |  |  |
|-------------------------------------------------------------------------------|-----|-----------------------------------------------------------|-----|--|--|
| The student's academic load is calculated for 15 weeks.                       |     |                                                           |     |  |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester         | 78  | Structured SWL (h/w)<br>Regular weekly student load       | 5.3 |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 97  | Unstructured SWL (h/w)<br>Irregular student load per week | 6.4 |  |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester | 175 |                                                           |     |  |  |

| Module Evaluation       |              |                 |                  |                |                               |  |
|-------------------------|--------------|-----------------|------------------|----------------|-------------------------------|--|
|                         |              | Time/Nu<br>mber | Weight (Marks)   | Week Due       | Relevant Learning<br>Outcome  |  |
| Formative               | Quizzes      | 5               | 20% (20)         | 2, 4, 7, 9, 11 | LO # 3, 5, 7, 9, 11 and<br>13 |  |
| assessment              | Assignments  | 5               | 10% (10)         | 5, 7,9,11,13   | LO #4, 5,8,10, and 12         |  |
|                         | Projects     | 2               | 10% (10)         | 6.11           | LO #5, and 10                 |  |
| Summative<br>assessment | Midterm Exam | 2hr             | 10% (10)         | 11             | LO #1-8                       |  |
|                         | Final Exam   | 3hr             | 50% (50)         | 16             | All                           |  |
| Total assessme          | ent          |                 | 100% (100 Marks) |                |                               |  |

|           | Delivery Plan (Weekly Syllabus)                                                             |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------|--|--|--|--|--|
|           | Material Covered                                                                            |  |  |  |  |  |
| Week 1    | Core concepts: Concepts of weight, force, moments, units, center of gravity, Vector Algebra |  |  |  |  |  |
| Week 2    | Vector quantities and scalar quantities .2D resolve force                                   |  |  |  |  |  |
| Week 3-4  | Force Systems: Component forces and Resultant forces.                                       |  |  |  |  |  |
| Week 5    | Resultant Forces examples and Dot product                                                   |  |  |  |  |  |
| Week 5    | Moment                                                                                      |  |  |  |  |  |
| Week 6    | Couple                                                                                      |  |  |  |  |  |
| Week 7-8  | Equilibrium: System Isolation, Free Body Diagram, 2-D and 3-D equilibrium equations         |  |  |  |  |  |
| Week 9-10 | Friction                                                                                    |  |  |  |  |  |
| Week 11   | Exam                                                                                        |  |  |  |  |  |
| Week 12   | Centers of Mass and Centroids: Center of Mass, Centroids of Lines, Areas and Volumes        |  |  |  |  |  |

| Week 13 | Area Centroid under curve              |
|---------|----------------------------------------|
| Week 14 | Wight Centroid                         |
| Week 15 | Preparatory week before the final exam |
| Week 16 | The week of final exam                 |

| Learning and Teaching Resources |                                                                               |                              |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------|------------------------------|--|--|--|--|
|                                 | Text                                                                          | Available in the<br>Library? |  |  |  |  |
| Required Texts                  | ENGINEIRING MECHANICS STATICS, JL MERIAM, LG<br>KRAIGE, JN BOLTON, SI Version | Yes                          |  |  |  |  |
| Recommended Texts               | ENGINEERING MECHANICS STATICS, R. C. Hibbeler, Plarson                        | yes                          |  |  |  |  |
| Websites                        |                                                                               |                              |  |  |  |  |

| Module 3<br>Subject information |               |                   |                                     |                                                       |   |  |  |
|---------------------------------|---------------|-------------------|-------------------------------------|-------------------------------------------------------|---|--|--|
| Module Title                    | Mat           | thematics Princij | ples                                | Module Delivery                                       |   |  |  |
| Module Type                     |               | Core              |                                     | ⊠Theory                                               |   |  |  |
| Module Code                     |               | COGTEK 100        |                                     |                                                       |   |  |  |
| ECTS Credits                    |               | 7                 |                                     |                                                       |   |  |  |
| SWL (hr./sem.)                  |               | 175               | ⊠Tutorial<br>□Practical<br>□Seminar |                                                       |   |  |  |
| Module Level UGx11 1            |               |                   | Semester of Delivery 1              |                                                       | 1 |  |  |
| Administering Department        |               | RETE              | College                             | College of Oil & Gas Techniques<br>Engineering/Kirkuk |   |  |  |
| Module Leader                   | Ali Jasim Moh | nammed            | e-mail                              | ali.jasim@ntu.edu.iq                                  |   |  |  |

| Module Leader's Acad. Title     |               | Assist. Lecturer | Module Leader's Qualification |       |     | MSc |
|---------------------------------|---------------|------------------|-------------------------------|-------|-----|-----|
| Module TutorName (if available) |               |                  | e-mail                        | Email |     |     |
| Peer Reviewer Na                | ime           | Name             | e-mail                        | Email |     |     |
| Scientific Commi<br>Date        | ttee Approval | 06/01/2023       | Version Number                |       | 1.0 |     |

| <b>Relation with other Modules</b> |      |          |  |  |  |  |
|------------------------------------|------|----------|--|--|--|--|
| Prerequisite module                | None | Semester |  |  |  |  |
| Co-requisites module               | None | Semester |  |  |  |  |

| Module          | e Aims, Learning Outcomes and Indicative Contents                                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 1. To provide students with a foundation in basic mathematical concepts, this foundation is essential for further studies in advanced mathematics and its applications. |
| Module Aims     | 2. To develop a foundation in mathematical concepts, principles, and problem-<br>solving techniques.                                                                    |
|                 | 3. To enhance logical reasoning, critical thinking, and analytical skills.                                                                                              |
|                 | 4. To promote mathematical literacy and numeracy among students.                                                                                                        |
|                 | 5. To develop students' ability to analyze problems and apply mathematical principles to solve complex problems in various contexts.                                    |
|                 | 6. Mathematics is essential for developing numerical literacy, which involves                                                                                           |
|                 | understanding and working with numbers, data, measurements, and                                                                                                         |
|                 | calculations.                                                                                                                                                           |
|                 | 1. Determinants:                                                                                                                                                        |
|                 | • Understand the concept of determinants and their properties.                                                                                                          |
| Module Learning | • Calculate determinants of matrices of various sizes. Apply determinants in                                                                                            |
| Outcomes        | solving systems of linear equations.                                                                                                                                    |
|                 | • Use determinants to find the inverse of a matrix.                                                                                                                     |
|                 | 2. Trigonometric Functions:                                                                                                                                             |
|                 | • Understand and apply the definitions of trigonometric functions such as sine,                                                                                         |
|                 | cosine, tangent, cosecant, secant, and cotangent.                                                                                                                       |
|                 | • Solve trigonometric equations. Apply trigonometric identities and formulas to simplify expressions and solve problems involving angles and triangles.                 |

|                     | 3. Vectors:                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | <ul> <li>Define and understand vectors in two and three dimensions.</li> <li>Perform vector operations such as addition, subtraction, scalar multiplication, and dot product. Calculate vector magnitudes and directions. Solve geometric and algebraic problems involving vectors.</li> <li>Apply vector concepts to physical and engineering problems, including forces, velocity, and displacement.</li> <li>Limits:</li> </ul>                               |
|                     | <ul> <li>Understand the concept of a limit. Evaluate limits algebraically and graphically.<br/>Apply limit properties and theorems to find limits of functions.</li> <li>Determine the continuity of a function at a point. Solve problems involving infinite limits and limits at infinity.</li> <li>5. Derivatives:</li> </ul>                                                                                                                                 |
|                     | <ul> <li>Define the derivative as the instantaneous rate of change of a function.</li> <li>Calculate derivatives using various differentiation rules, including the power rule, product rule, quotient rule, and chain rule.</li> <li>Apply derivatives to analyze functions, Understand the relationship between the graph of a function and its derivative.</li> <li>Solve related rates problems using derivatives.</li> </ul>                                |
|                     | 6. Integration:                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | <ul> <li>Understand the concept of integration. Calculate definite and indefinite integrals using various integration techniques, such as substitution, integration by parts, and trigonometric substitution.</li> <li>Apply integration to find areas between curves, volumes of solids of revolution, and other applications in physics and engineering.</li> <li>Use integration to solve differential equations and represent inverse derivatives</li> </ul> |
|                     | Indicative content includes the following.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Indicative Contents | <ul> <li>Determinants and their properties:<br/>This topic involves understanding determinants, their properties, and their applications, including solving linear equations using Cramer's method.</li> <li>Trigonometric functions:</li> </ul>                                                                                                                                                                                                                 |
|                     | <ul> <li>This includes studying the properties and graphs of trigonometric functions, trigonometric relationships and identities, and their applications in solving equations and various other contexts.</li> <li>Vectors:</li> </ul>                                                                                                                                                                                                                           |
|                     | spaces, vector projections, orthogonal components, and their applications in finding areas of shapes.                                                                                                                                                                                                                                                                                                                                                            |

|            | <ul> <li>Limits:<br/>Understanding the concept of limits of functions, including algebraic and trigonometric functions, as well as limits at infinity. Applications of limits are also explored.</li> <li>Derivatives:<br/>Studying derivatives of algebraic and trigonometric functions, implicit functions, and inverse functions. The chain rule and applications of derivatives, particularly in mechanical engineering, are covered.</li> <li>Hyperbolic functions:<br/>This involves derivatives of hyperbolic functions and inverse hyperbolic functions, drawing graphs, and their applications in physical and mechanical contexts.</li> <li>Integration:<br/>Integration:<br/>Integration theory, definite and indefinite integration, integration of various functions. Methods of integration, such as integration by parts, partial fractions, and substitution, are also explored. Applications of integration in physics, engineering, and finding areas under curves and volumes of revolution are covered.</li> <li>Differential equations:<br/>Simplifying differential equations is discussed, along with numerical integration methods such as the Trapezoidal Rule and Simpson's Rule, and their applications.</li> </ul> |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Learning and Teaching Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Strategies | <ul> <li>Clearly define the learning objectives for the unit. Students should understand what they are expected to learn and achieve by the end of the unit.</li> <li>Active learning by engaging students in hands-on activities, problem-solving exercises, and group discussions. This helps students to actively participate in the learning process and enhances their understanding of mathematical concepts.</li> <li>Supported Learning: Build the unit in a way that builds on previously learned concepts. Start with foundational topics and gradually progress to more complex ideas. Provide clear explanations and examples to support students' understanding at each stage.</li> <li>Link mathematical concepts to real-life applications to prove their relevance and practicality. Show students how mathematics is used in various fields and professions, which will enhance their appreciation of the subject.</li> <li>Use technology tools and resources to enhance the teaching and learning experience. Interactive software, online simulations, graphing calculators, and</li> </ul>                                                                                                                                |

| educational | apps | can | help | students | visualize | and | explore | mathematical |
|-------------|------|-----|------|----------|-----------|-----|---------|--------------|
| concepts.   |      |     |      |          |           |     |         |              |

| Student Workload (SWL)<br>The student's academic load is calculated for 15 weeks. |     |                                                           |      |  |  |  |
|-----------------------------------------------------------------------------------|-----|-----------------------------------------------------------|------|--|--|--|
| Structured SWL (hr./sem.)<br>Regular student load during the<br>semester          | 78  | Structured SWL (hr./w)<br>Regular weekly student load     | 5.2  |  |  |  |
| Unstructured SWL (hr./sem.)<br>Irregular student load during the<br>semester      | 97  | Unstructured SWL (h/w)<br>Irregular student load per week | 6.46 |  |  |  |
| Total SWL (hr./sem.)<br>The student's total academic load<br>during the semester  | 175 |                                                           |      |  |  |  |

| Module Evaluation       |                |                 |                |                       |                              |  |  |  |
|-------------------------|----------------|-----------------|----------------|-----------------------|------------------------------|--|--|--|
|                         |                | Time/Nu<br>mber | Weight (Marks) | Week Due              | Relevant Learning<br>Outcome |  |  |  |
|                         | Quizzes        | 5               | 20% (20)       | 3, 5, 7, 10<br>and 13 | LO #1, #3, #8, #12, #14      |  |  |  |
| Formative<br>assessment | Assignments    | 5               | 15% (15)       | 3, 4, 7,12<br>and 14  | LO #2, #4, #6, #8, #10       |  |  |  |
|                         | Projects /Lab. |                 |                |                       |                              |  |  |  |
|                         | Report         | 1               | 5%(5)          | 10                    | LO 7#                        |  |  |  |
| Summative               | Midterm Exam   | 2 hrs.          | 10% (10)       | 7                     | LO #1 - 2                    |  |  |  |
| ussessment              | Final Exam     | 3hr.            | 50% (50)       | 16                    | All                          |  |  |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                     |  |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                 | Material Covered                                                                                    |  |  |  |  |  |
| Wook 1                          | Determinants and their properties - Determinants of n degree - Solving Linear Equations by Cramer's |  |  |  |  |  |
| week 1                          | Method - Applications to Determinants.                                                              |  |  |  |  |  |
|                                 | Trigonometric functions - Graph of Trigonometric Functions- Trig. relationships and                 |  |  |  |  |  |
| Week 2                          | identities - Trigonometric applications and equations - various applications on trigonometric       |  |  |  |  |  |
|                                 | functions.                                                                                          |  |  |  |  |  |
|                                 | Vectors - vector arithmetic operations in two and three-dimensional spaces - Vector                 |  |  |  |  |  |
| Week 3                          | Projections & Orthogonal Components - orthogonal vectors and unit vectors - Calculate               |  |  |  |  |  |
|                                 | vector scales, scalar and vector projections - Application of vectors to find area of shapes.       |  |  |  |  |  |
| Weels 4                         | limits - Limit of a Function -The limits of algebraic and trigonometric functions and the           |  |  |  |  |  |
| Week 4                          | limits of functions At Infinity ( $\infty$ ) - Applications on limits The Limit                     |  |  |  |  |  |
|                                 | derivatives- Composite Functions - Derivatives of algebraic and trigonometric functions -           |  |  |  |  |  |
| Week 5                          | Derivatives of Implicit Functions - chain rule - Applications of Derivatives (Mechanical            |  |  |  |  |  |
|                                 | Engineering)                                                                                        |  |  |  |  |  |
|                                 | Derivative of inverse functions - Derivative of Inverse Trigonometric Functions - Various           |  |  |  |  |  |
| WEEK U                          | applications. Derivatives of Logarithmic and Exponential Functions.                                 |  |  |  |  |  |
|                                 | Hyperbolic functions - Derivatives of Hyperbolic Functions - The derivative of Inverse              |  |  |  |  |  |
| Week 7                          | Hyperbolic Functions - Drawing and Graphs of Hyperbolic Functions and their Inverses                |  |  |  |  |  |
|                                 | relations - Physical and Mechanical applications.                                                   |  |  |  |  |  |
| West 9                          | Integration - Integration Theory - Definite and Indefinite Integration - Integration of             |  |  |  |  |  |
| Week 8                          | Trigonometric and Inverse Functions.                                                                |  |  |  |  |  |
| West 0                          | Integration of Logarithmic and Exponential Functions - Integration of Hyperbolic and Inverse        |  |  |  |  |  |
| Week 9                          | Functions - Improper Integral and Hospital's Rule.                                                  |  |  |  |  |  |
| Week 10                         | Methods of integration: Integration by parts - Integration by Partial Fractions -                   |  |  |  |  |  |
| Week 11                         | Integration by substituting the trigonometric function - Integration by completing the              |  |  |  |  |  |
|                                 | squareetc                                                                                           |  |  |  |  |  |
|                                 |                                                                                                     |  |  |  |  |  |

| Week 12 | Physical and engineering Applications of Integration - The area is under a curve and between |
|---------|----------------------------------------------------------------------------------------------|
| Week 12 | two curves.                                                                                  |
| Week 13 | Volume of Revolution - Arc Length of a Curve (Integration Application)                       |
| Week 14 | simplify differential equations                                                              |
| Wook 15 | Numerical Integration - Trapezoidal Rule & Simpson's Rule - Numerical Integration Method -   |
| WEEK 13 | Applications.                                                                                |

| Learning and Teaching Resources |                                                                           |                              |  |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------------|------------------------------|--|--|--|--|--|
|                                 | Text                                                                      | Available in the<br>Library? |  |  |  |  |  |
| Required Texts                  | Thomas' Calculus" by George B. Thomas Jr., Maurice D. Weir, and Joel Hass | Yes                          |  |  |  |  |  |
| Recommended Texts               | Advanced Engineering Mathematics" by Erwin Kreyszig                       | No                           |  |  |  |  |  |
|                                 | "Calculus" by Michael Spivak                                              | No                           |  |  |  |  |  |
| Websites                        | https://www.khanacademy.org                                               |                              |  |  |  |  |  |

| Module 4<br>Subject information |   |                       |                                                       |           |           |  |
|---------------------------------|---|-----------------------|-------------------------------------------------------|-----------|-----------|--|
| Module Title                    | F | Clectrical technology | Module Delivery                                       |           |           |  |
| Module Type                     |   | Core                  | ⊠Theory                                               |           |           |  |
| Module Code                     |   | <b>RETE 102</b>       | □Lecture                                              |           |           |  |
| ECTS Credits                    |   | 6                     | ⊠Lab                                                  |           |           |  |
|                                 |   |                       |                                                       | ⊠Tutorial |           |  |
| SWL (hr/sem)                    |   | 150                   | □Practical                                            |           |           |  |
|                                 |   |                       | □Seminar                                              | 1         |           |  |
| Module Level                    |   | 1                     | Semester of Delivery                                  |           | 1         |  |
| Administering Department        |   | RETE                  | College of Oil & Gas Techniques<br>Engineering/Kirkuk |           | echniques |  |

| Module Leader            | Naseer Tawfe  | eeq Alwan  | e-mail                        | naseer.t.alwan@ntu.edu.iq |     |     |
|--------------------------|---------------|------------|-------------------------------|---------------------------|-----|-----|
| Module Leader's          | Acad. Title   | Lecturer   | Module Leader's Qualification |                           |     | PhD |
| Module Tutor             | Naseer Tawfe  | eeq Alwan  | e-mail                        | naseer.t.alwan@ntu.edu.iq |     |     |
| Peer Reviewer Na         | ame           | Name       | e-mail                        | Email                     |     |     |
| Scientific Commi<br>Date | ttee Approval | 06/01/2023 | Version Number                |                           | 1.0 |     |

| Relation with other Modules |      |          |  |  |  |  |
|-----------------------------|------|----------|--|--|--|--|
| Prerequisite module         | None | Semester |  |  |  |  |
| Co-requisites module        | None | Semester |  |  |  |  |

| Modul                       | e Aims, Learning Outcomes and Indicative Contents                                                                                                                                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ol> <li>Connect electrical circuits and compare theoretical results with practical</li> <li>Introduce the student to understand electrical theories and prove them in practice</li> </ol> |
| Module Learning<br>Outcomes | 1. To familiarize the student with the importance of the most important electrical principles                                                                                              |
|                             | 2. Learning Outcomes, Teaching, Learning and Assessment Methods                                                                                                                            |
|                             | 3. To distinguish the electrical components and parts and their working principle.                                                                                                         |
|                             | Indicative content includes the following.                                                                                                                                                 |
|                             | Part A -Principles of circuits                                                                                                                                                             |
| Indicative Contents         | To develop the student's mental ability to connect simple and complex circuits.                                                                                                            |
|                             | The student learns how to develop a strategy to change a complex circuit to a simple circuit with the same results.                                                                        |
|                             | Part B – Principles to connect circuits.                                                                                                                                                   |
|                             | The student learns to connect circuits according to the circuit diagram.                                                                                                                   |

# Learning and Teaching Strategies

| Strate                                                                        | gies                                                                             | Type something like: The main strategy that will be adopted in delivering this module<br>is to encourage students' participation in the exercises, while at the same time refining<br>and expanding their critical thinking skills. This will be achieved through classes,<br>interactive tutorials and by considering type of simple experiments involving some<br>sampling activities that are interesting to the students. |        |                |                                                            |          |                              |                                     |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|------------------------------------------------------------|----------|------------------------------|-------------------------------------|--|
|                                                                               | Student Workload (SWL)<br>The student's academic load is calculated for 15A week |                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                |                                                            |          |                              |                                     |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester         |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 78             | Structured SWL (h/w)<br>5.2<br>Regular weekly student load |          |                              | 5.2                                 |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 72             | Unstructured SWL (h/w)<br>Irregular student load per week  |          |                              | 4.8                                 |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               | 150    |                |                                                            |          |                              |                                     |  |
| Module Evaluation                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                |                                                            |          |                              |                                     |  |
| Time/N<br>mber                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Weight (Marks) |                                                            | Week Due | Relevant Learning<br>Outcome |                                     |  |
|                                                                               | Quizzes                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      | 10% (10)       |                                                            | % (10)   | 5, 10                        | LO#7and #11                         |  |
| Formative                                                                     | Assignmen                                                                        | nts                                                                                                                                                                                                                                                                                                                                                                                                                           | 4      | 10             |                                                            | % (10)   | 2,4,7, and 12                | LO #3, #5, #9 and #12               |  |
| assessment                                                                    | Projects /I                                                                      | .ab.                                                                                                                                                                                                                                                                                                                                                                                                                          | 2      | 10             |                                                            | % (10)   | Continuous                   | LO #3 and #6                        |  |
|                                                                               | Report                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                               | 10     | 10             |                                                            | % (10)   | Continuous                   | LO#3,#5,#6,#7,#8#,#<br>,#10,#11,#13 |  |
| Summative                                                                     | Midterm H                                                                        | Exam                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 hour | rs 10          |                                                            | % (10)   | 7                            | LO #1 - #2                          |  |
| assessment                                                                    | Final Exar                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 hour | ſS             | 50                                                         | % (50)   | 16                           | All                                 |  |

| Delivery Plan (Weekly Syllabus) |                                                                     |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------|--|--|--|--|
|                                 | Material Covered                                                    |  |  |  |  |
| Week 1                          | How to use measuring devices for the purpose of measuring (R, I, V) |  |  |  |  |
| Week 2                          | Ohm's law Connecting resistors to mixed parallel                    |  |  |  |  |
| Week 3                          | Kirchhoff's law for voltage and current                             |  |  |  |  |
| Week 4                          | Applications of Kirchhoff's law                                     |  |  |  |  |
| Week 5                          | Thevenin Theory                                                     |  |  |  |  |
| Week 6                          | Norton Theory                                                       |  |  |  |  |
| Week 7                          | Tractorism Theory                                                   |  |  |  |  |
| Week 8                          | Nodal theory                                                        |  |  |  |  |
| Week 9                          | Series circuits consisting of a coil                                |  |  |  |  |
| Week 10                         | Parallel circuits consisting of a coil                              |  |  |  |  |
| Week 11                         | Series circuits consisting of a capacitor                           |  |  |  |  |
| Week 12                         | Parallel circuits consisting of a capacitor                         |  |  |  |  |
| Week 13                         | Resonant circuit                                                    |  |  |  |  |
| Week 14                         | Applications of series circuits                                     |  |  |  |  |
| Week 15                         | Applications of parallel circuits                                   |  |  |  |  |
| Week 16                         | Preparatory week before the final exam                              |  |  |  |  |
|                                 | Delivery Plan (Weekly Lab. Syllabus)                                |  |  |  |  |
|                                 | Material Covered                                                    |  |  |  |  |
| Week 1  | Connecting avow-meter with resistance                                 |
|---------|-----------------------------------------------------------------------|
| Week 2  | Connecting resistance with power supply                               |
| Week 3  | Applications                                                          |
| Week 4  | Connecting two circuits and measuring the voltage for each resistance |
| Week 5  | Applications                                                          |
| Week 6  | Connecting two circuits and measuring the current at each resistance  |
| Week 7  | Applications                                                          |
| Week 8  | Resonance theory for electrical circuits                              |
| Week 9  | Resonance circuits and their applications                             |
| Week 10 | Make a simple equivalent circuit equivalent to the original circuit   |
| Week 11 | Applications                                                          |
| Week 12 | Making half and full rectifier wave circuits                          |
| Week 13 | Applications                                                          |
| Week14  | Find a load that draws a voltage equal to the source voltage          |
| Week 15 | Applications                                                          |
| Week16  | Preparatory week before the final exam                                |

| Learning and Teaching Resources |                                                                     |                              |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------|------------------------------|--|--|--|--|
|                                 | Text                                                                | Available in the<br>Library? |  |  |  |  |
| Required Texts                  | "Basic Electrical Engineering", THERAJA.                            | Yes                          |  |  |  |  |
| Recommended Texts               | "Electrical and Electronic Principles and Technology", John<br>Bird | Yes                          |  |  |  |  |
| Websites                        | Basic Electrical Circuits website tutorials                         |                              |  |  |  |  |

| Module 5<br>Subject information       |              |                 |                                                      |                           |            |       |
|---------------------------------------|--------------|-----------------|------------------------------------------------------|---------------------------|------------|-------|
| Module Title                          |              |                 | Modu                                                 | ıle Delivery              |            |       |
| Module Type                           |              | Core            |                                                      |                           | □Theory    |       |
| Module Code                           |              | <b>RETE 103</b> |                                                      |                           | □Lecture   |       |
| ECTS Credits                          |              | 6               |                                                      |                           | ⊠Lab       |       |
|                                       |              |                 |                                                      |                           | □Tutorial  |       |
| SWL (hr/sem)                          |              | 150             |                                                      |                           | □Practical |       |
|                                       |              |                 |                                                      |                           | □Seminar   |       |
| Module Level                          |              | 1               | Semester of                                          | ester of Delivery         |            | 1     |
| Administration D                      | Department   | RETE            | College of Oil & Gas Technique<br>Engineering/Kirkuk |                           | Techniques |       |
| Module Leader                         | Naseer Tawfe | eeq Alwan       | e-mail                                               | naseer.t.alwan@ntu.edu.iq |            | lu.iq |
| Module Leader's Acad. Title           |              | Lecturer        | Module Leader's Qualification PhD                    |                           | PhD        |       |
| Module Tutor Name (if available)      |              | e-mail          |                                                      |                           |            |       |
| Peer Reviewer Name                    |              |                 | e-mail                                               |                           |            |       |
| Scientific Committee Approval<br>Date |              | 06/01/2023      | Version Nu                                           | umber                     |            |       |

| <b>Relation with other Modules</b> |      |          |  |  |  |
|------------------------------------|------|----------|--|--|--|
| Prerequisite module                | None | Semester |  |  |  |
| Co-requisites module               | None | Semester |  |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                           |  |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Module Aims                                            | 1. The student is able to acquire manual skills by carrying out the operation and manufacturing processes using various hand tools and measuring tools.                                                   |  |  |  |  |  |
|                                                        | 2. Introducing the student to gain the manual skill by implementing the operations and connection of the manual tools and measuring tools for the household refrigeration and air conditioning equipment. |  |  |  |  |  |

| workshop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>To familiarize the student with the importance of workshops.</li> <li>To teach the student how to acquire the manual skill by carrying out the operation and manufacturing processes using various hand tools and measuring tools.</li> <li>To distinguish the manual tools and measuring tools for the household refrigeration and air conditioning equipment.</li> </ol>                                                                                                                                                                                                            |
| Indicative content includes the following.<br><u>Part A -Tools</u><br>Include recognition of different tools. Employed for surface preparation and methods of<br>application correctly, Devices of measuring dimensions, Calipers, types and uses, drill<br>types and dimensions<br><u>Part B - Measuring tools</u>                                                                                                                                                                                                                                                                            |
| T Steel miller, Veneer, Micrometer, Height & height gauge hand tools, Saws,<br>Hammers, Files, Scriber, Chisels, Taps and dies, Surface plate, Bench working.<br><u>Part C –Welding Workshop</u><br>Include recognition of tools and materials employed – Gas cylinder of oxy – Acetylene<br>welding of surface – Electrical are welding exercise – Welding spot.<br><u>Part D –</u> <b>Lathing Workshop</b><br>lathe machine – Parts – Operation – Practice on longitudinal lathing – Making center –<br>Puncturing – Making external teeth – Practice – Employing measuring tools – internal |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Learning and Teaching Strategies |                                                                                                                       |  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                  | Teaching Method 1 - Asynchronous on-line course materials                                                             |  |  |  |  |
| Strategies                       | Attendance Recorded: yes                                                                                              |  |  |  |  |
|                                  | Unscheduled Directed Student Hours (time spent away from the timetabled sessions but directed by the teaching staff). |  |  |  |  |
|                                  | Teaching Method 2 - Practical                                                                                         |  |  |  |  |

| Description: Practical homework assignments                                                                           |
|-----------------------------------------------------------------------------------------------------------------------|
| Attendance Recorded: Yes                                                                                              |
| Unscheduled Directed Student Hours (time spent away from the timetabled sessions but directed by the teaching staff). |

| Student Workload (SWL)<br>The student's academic load is calculated for 15 weeks. |    |                                                           |   |  |  |
|-----------------------------------------------------------------------------------|----|-----------------------------------------------------------|---|--|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester             | 90 | Structured SWL (h/w)<br>Regular weekly student load       | 6 |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester         | 60 | Unstructured SWL (h/w)<br>Irregular student load per week | 4 |  |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester     |    | 150                                                       |   |  |  |

| Module Evaluation       |                |                 |                  |            |                              |  |  |
|-------------------------|----------------|-----------------|------------------|------------|------------------------------|--|--|
|                         |                | Time/Nu<br>mber | Weight (Marks)   | Week Due   | Relevant Learning<br>Outcome |  |  |
|                         | Quizzes        | No              | No               | No         | No                           |  |  |
| Formative<br>assessment | Assignments    | 4               | 10% (10)         | Continuous | All                          |  |  |
|                         | Projects /Lab. | 10              | 40% (40)         | Continuous | All                          |  |  |
|                         | Report         | 10              | 50% (50)         | Continuous | All                          |  |  |
| Summative               | Midterm Exam   | No              | No               | No         | No                           |  |  |
| assessment              | Final Exam     | No              | No               | No         | No                           |  |  |
| Total assessment        |                |                 | 100% (100 Marks) |            |                              |  |  |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                                                                                                                                                        |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                      | Material Covered                                                                                                                                                                                       |  |  |  |
| 1                                    | Tools                                                                                                                                                                                                  |  |  |  |
|                                      | Include recognition of different tools. Employed for surface preparation and methods of application correctly, Devices of measuring dimensions, Calipers, types and uses, drill types and dimensions   |  |  |  |
| 2-3                                  | Measuring tools                                                                                                                                                                                        |  |  |  |
|                                      | Steel miller, Veneer, Micrometer, Height & height gauge hand tools, Saws, Hammers, Files, Scriber, Chisels, Taps and dies, Surface plate, Bench working.                                               |  |  |  |
| 4-6                                  | Welding Workshop                                                                                                                                                                                       |  |  |  |
|                                      | Include recognition of tools and materials employed – Gas cylinder of oxy – Acetylene welding of surface – Electrical are welding exercise – Welding spot.                                             |  |  |  |
| 7-9                                  | Lathing Workshop                                                                                                                                                                                       |  |  |  |
|                                      | lathe machine – Parts – Operation – Practice on longitudinal lathing – Making center – Puncturing – Making external teeth – Practice – Employing measuring tools – internal & external lath machining. |  |  |  |
| 10-11                                | Alloying Workshop                                                                                                                                                                                      |  |  |  |
|                                      | Contents of alloying workshops – Alloying sands and characteristics – Additives for improvement – Metals melts – Method of casting – Sand mold shaping – Heat treatment.                               |  |  |  |
| 12-13                                | Carpentry Workshop                                                                                                                                                                                     |  |  |  |
|                                      | Tools, machinery in the carpentry workshop, Fundamental principles – types of wood – application samples preparation                                                                                   |  |  |  |
| 14-15                                | Cars Workshop                                                                                                                                                                                          |  |  |  |
|                                      | Modes of car motor operation - Fuel feed pump - Electrical spark transfer device - Pistons in cylinder as motion transfer device to the front, back wheels.                                            |  |  |  |
| 16                                   | Preparatory week before the final exam                                                                                                                                                                 |  |  |  |

| Learning and Teaching Resources |          |                              |  |  |  |
|---------------------------------|----------|------------------------------|--|--|--|
|                                 | Text     | Available in the<br>Library? |  |  |  |
| Required Texts                  | Workshop | Yes                          |  |  |  |

| Module 6<br>Subject information |           |                            |                                  |                          |                |       |
|---------------------------------|-----------|----------------------------|----------------------------------|--------------------------|----------------|-------|
| Module Title                    | HUMAN     | HUMAN RIGHTS AND DEMOCRACY |                                  |                          | ule Deliver    | y     |
| Module Type                     |           | BASIC                      |                                  |                          | ⊠Theory        | 7     |
| Module Code                     |           | NTU100                     |                                  |                          |                | e     |
| ECTS Credits                    |           | 2                          |                                  |                          | □Lab           |       |
|                                 |           |                            |                                  |                          | □Tutorial      |       |
| SWL (hr/sem)                    |           | 50                         |                                  |                          | □Practic       | al    |
|                                 |           |                            |                                  |                          | □Seminar       |       |
| Module Level                    |           | 1                          | Semester of Delivery             |                          | 1              |       |
| Administering D                 | epartment | RETE                       | College Type College Code        |                          | lege Code      |       |
| Module Leader                   | Dr. Osama |                            | e-mail                           | Osama@ <u>ntu.edu.iq</u> |                |       |
| Module Leader's Acad. Title     |           | Lecturer                   | Module Leader's<br>Qualification |                          |                | Ph.D. |
| Module Tutor                    | None      |                            | e-mail                           | None                     | lone           |       |
| Peer Reviewer Name              |           |                            | e-mail                           |                          |                |       |
| Review Committee Approval       |           | 06/01/2023 Version Numb    |                                  | umber                    | <b>ber</b> 1.0 |       |

| Relation with Other Modules |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |                                                                          |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| Prerequisite module         | None                                                                                                                                                                                                                                                                                                                                                                                                  | Semester                                                                                                                         |                                                                          |  |  |  |
| Co-requisites module        | None                                                                                                                                                                                                                                                                                                                                                                                                  | Semester                                                                                                                         |                                                                          |  |  |  |
| Module                      | Aims, Learning Outcomes and Indicativ                                                                                                                                                                                                                                                                                                                                                                 | e Contents                                                                                                                       |                                                                          |  |  |  |
| Module Aims                 | <ol> <li>Increase the student's knowledge of the<br/>development of human rights and democe</li> <li>Develop the student's analytical and concurrent and future aspects of human right</li> <li>Train the student on the importance of a<br/>life as a means to promote respect for h<br/>political and cultural activities.</li> <li>Empower students to understand the importance of and</li> </ol> | theoretical and<br>racy.<br>ritical skills rega<br>rs and democracy<br>rtive participatio<br>uman rights and<br>portance of edue | historical<br>arding the<br>y.<br>n in public<br>engage in<br>cation and |  |  |  |

|                             | its role in promoting a culture of human rights and democr<br>contributing to the building of a civilized society based on g<br>governance, faith in human rights, education about them and ac |  |  |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                             | participation in governance through free and fair elections.                                                                                                                                   |  |  |  |  |  |  |
|                             | 1. Understand the historical development of human rights in ancient civilizations and their relevance to contemporary societies.                                                               |  |  |  |  |  |  |
|                             | 2. Analyze the positions of divine laws and religious texts on human rights and evaluate their impact on different societies.                                                                  |  |  |  |  |  |  |
|                             | 3. Critically examine international constitutions and treaties related to human rights and assess their effectiveness in promoting and protecting human rights.                                |  |  |  |  |  |  |
|                             | 4. Evaluate the role and significance of the United Nations Charter in establishing a framework for the protection of human rights at the international level.                                 |  |  |  |  |  |  |
|                             | 5. Assess the functions and contributions of international organizations in promoting and safeguarding human rights globally.                                                                  |  |  |  |  |  |  |
|                             | 6. Explore the role of non-governmental organizations (NGOs) in advocating for and protecting human rights in different contexts.                                                              |  |  |  |  |  |  |
| Module Learning<br>Outcomes | 7. Identify and explain the key safeguards and mechanisms in place to ensure the protection of human rights at the national and international levels.                                          |  |  |  |  |  |  |
|                             | 8. Understand the concept of international humanitarian law and its historical evolution, and its significance in times of armed conflict.                                                     |  |  |  |  |  |  |
|                             | 9. Analyze the concept, origin, and evolution of democracy, and understand its principles and values.                                                                                          |  |  |  |  |  |  |
|                             | 10. Examine the relationship between Islam and democracy and evaluate different perspectives on the compatibility of these concepts.                                                           |  |  |  |  |  |  |
|                             | 11. Identify and describe the characteristics and features of a democratic system.                                                                                                             |  |  |  |  |  |  |
|                             | 12. Differentiate between various forms and types of democracy and assess their strengths and weaknesses.                                                                                      |  |  |  |  |  |  |
|                             | 13. Analyze the political components of democracy, including the role of political parties and their influence on the democratic process.                                                      |  |  |  |  |  |  |
|                             | 14. Understand the relationship between democracy, education, and the role of education in promoting democratic values and citizenship.                                                        |  |  |  |  |  |  |
|                             | 15. Evaluate the role of media in a democratic system, including its influence on public opinion and the functioning of democratic                                                             |  |  |  |  |  |  |

|                     | institutions.                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | <ol> <li>Human Rights in Ancient Civilizations:         <ul> <li>Overview of human rights in ancient Greek civilization</li> <li>Exploration of human rights in ancient Roman civilization</li> </ul> </li> <li>Divine Laws and Human Rights:         <ul> <li>Examination of the positions of divine laws and religious texts on</li> </ul> </li> </ol>                                                |
|                     | <ul> <li>human rights         <ul> <li>Analysis of the impact of divine laws on human rights in different societies</li> </ul> </li> <li>Human Rights in International Constitutions:         <ul> <li>Study of human rights provisions in international constitutions and charters</li> </ul> </li> </ul>                                                                                              |
|                     | <ul> <li>Comparison of the approaches taken by different countries in guaranteeing human rights in their constitutions</li> <li>The United Nations Charter and Human Rights:         <ul> <li>Overview of the United Nations Charter and its significance in promoting and protecting human rights</li> <li>Analysis of specific articles and provisions related to human rights</li> </ul> </li> </ul> |
| Indicative Contents | <ul> <li>5. Human Rights in International Organizations:         <ul> <li>Examination of the role and functions of international organizations in promoting and safeguarding human rights</li> <li>Case studies on the work of specific international organizations in advancing human rights agendas</li> </ul> </li> </ul>                                                                            |
|                     | <ul> <li>6. Human Rights in Non-Governmental Organizations:         <ul> <li>Exploration of the role and contributions of non-governmental organizations (NGOs) in the field of human rights</li> <li>Analysis of the challenges and opportunities faced by NGOs in advocating for human rights</li> </ul> </li> </ul>                                                                                  |
|                     | <ul> <li>7. Safeguards for Human Rights:         <ul> <li>Study of legal and institutional safeguards for the protection of human rights at national and international levels</li> <li>Examination of mechanisms such as national human rights institutions, ombudsman offices, and international human rights tribunals</li> </ul> </li> </ul>                                                         |
|                     | <ul> <li>8. International Humanitarian Law:         <ul> <li>Introduction to the concept of international humanitarian law and its historical development</li> <li>Analysis of the legal framework governing the conduct of armed conflicts and the protection of civilians</li> </ul> </li> </ul>                                                                                                      |
|                     | <ul> <li>9. The Concept and Evolution of Democracy: <ul> <li>Understanding the concept, origin, and historical evolution of democracy</li> <li>Exploration of different theoretical perspectives on democracy and its core principles</li> </ul> </li> <li>10. Islam and Democracy:</li> </ul>                                                                                                          |

|            | <ul> <li>Examination of the relationship between Islam and democracy</li> <li>Analysis of different interpretations and debates surrounding the compatibility of Islamic principles and democratic values</li> <li>11. Characteristics of Democracy:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul> <li>Identification and explanation of the key characteristics and features of a democratic system</li> <li>Analysis of the importance of democratic principles such as</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | popular autonomy, rule of law, and political participation<br>12. Forms and Types of Democracy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | <ul> <li>Exploration of different forms and types of democracy, including direct democracy, representative democracy, and hybrid systems</li> <li>Assessment of the strengths and weaknesses of each form of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 13. Political Components of Democracy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | • Study of the role of political parties and electoral systems in a democratic system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | • Analysis of the influence of interest groups, civil society organizations, and media on democratic processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | <ul> <li>14. Democracy, Education, and Citizenship:</li> <li>Examination of the relationship between democracy, education, and the role of education in promoting democratic values and active citizenship</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | <ul> <li>Analysis of the importance of civic education and the development of critical thinking skills in a democratic society</li> <li>15. Media and Democracy:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | • Evaluation of the role of media in a democratic system, including<br>the freedom of the press, media ethics, and media's role in shaping<br>public opinion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | <ul> <li>Analysis of the challenges and opportunities posed by digital<br/>media in the context of democratic societies</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | Learning and Teaching Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Strategies | <ol> <li>Lectures: Traditional lectures delivered by the instructor can provide an overview of key concepts, theories, and historical developments in the field. Lectures can help students build foundational knowledge and understand the broader context of the subject matter.</li> <li>Discussions and Debates: Facilitating class discussions and debates allows students to actively engage with the course material, share their perspectives, and critically analyze different viewpoints. This can promote critical thinking, enhance communication skills, and encourage students to explore the complexities of human rights and democracy.</li> <li>Case Studies: Using real-life case studies and examples can help students</li> </ol> |

| cases can deepen understanding, highlight challenges, and stimulate discussions on the implementation of human rights and democratic principles in different contexts. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Group Projects and Presentations: Assigning group projects or                                                                                                       |
| presentations on specific topics within the course can encourage                                                                                                       |
| collaboration, research skills, and in-depth understanding. Working in                                                                                                 |
| groups allows students to explore different aspects of the subject matter                                                                                              |
| and present their findings to the class.                                                                                                                               |
| 5. Guest Speakers: Inviting guest speakers who are experts in the field of                                                                                             |
| numan fights, democracy, or international law can provide students with<br>practical insights, real world experiences, and diverse perspectives. Guest                 |
| speakers can also share their expertise on specific topics or case studies                                                                                             |
| related to the course.                                                                                                                                                 |
| 6. Interactive Workshops and Simulations: Conducting interactive                                                                                                       |
| workshops or simulations can provide students with hands-on experiences                                                                                                |
| related to human rights and democracy. This can include activities such                                                                                                |
| as role-playing exercises, mock trials, or model United Nations sessions,                                                                                              |
| allowing students to understand the practical application of concepts and                                                                                              |
| 7 Multimedia Resources: Incorporating multimedia resources such as                                                                                                     |
| videos, documents, and online platforms can enhance students'                                                                                                          |
| understanding and engagement with the course material. Multimedia                                                                                                      |
| resources can provide visual and audio representations of complex topics,                                                                                              |
| showcase real-world examples, and stimulate discussions.                                                                                                               |
| 8. Independent Research and Critical Analysis: Assigning research projects                                                                                             |
| or essays that require independent research and critical analysis can foster<br>salf directed learning, research skills, and the ability to critically evaluate        |
| sources of information. This can deepen students' understanding of                                                                                                     |
| specific topics and encourage them to develop their own arguments and                                                                                                  |
| perspectives.                                                                                                                                                          |
| 9. Assessments and Feedback: Providing regular assessments, such as                                                                                                    |
| quizzes, exams, or essays, can help students gauge their understanding of                                                                                              |
| the material and receive feedback on their progress. Constructive                                                                                                      |
| throughout the course                                                                                                                                                  |
| unoughout the course.                                                                                                                                                  |
|                                                                                                                                                                        |

| Student Workload (SWL)                                                |    |                                                           |              |  |
|-----------------------------------------------------------------------|----|-----------------------------------------------------------|--------------|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester | 33 | Structured SWL (h/w)<br>Regular weekly student load       | (32/15)=2.2  |  |
| Unstructured SWL (h/sem)                                              | 17 | Unstructured SWL (h/w)<br>Irregular student load per week | (18/15)=1.13 |  |

| Irregular student load during the |   |   |  |
|-----------------------------------|---|---|--|
| semester                          |   |   |  |
| Total SWL (h/sem)                 |   |   |  |
| The student's total academic load | 5 | 0 |  |
| during the semester               |   |   |  |

| Module Evaluation |                |                  |                |          |                   |  |
|-------------------|----------------|------------------|----------------|----------|-------------------|--|
|                   |                | Time/Nu<br>mber  | Weight (Marks) | Week Due | Relevant Learning |  |
| Quizzes           |                | 2                | 20% (20)       | 5 and10  | LO #2, and #6     |  |
| Formative         | Assignments    | 2                | 10% (10)       | 6and 12  | LO#3 and #8       |  |
| assessment        | Projects /Lab. | 0                | 0              |          |                   |  |
|                   | Report         | 1                | 10% (10)       | 14       | LO #5             |  |
| Summative         | Midterm Exam   | 1 hour           | 10% (10)       | 7        | LO #1 - #3        |  |
| assessment        | Final Exam     | 3hr              | 50% (50)       | 16       | All               |  |
| Total assessment  |                | 100% (100 Marks) |                |          |                   |  |

| Delivery Plan (Weekly Syllabus) |                                                                               |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
|                                 | Material Covered                                                              |  |  |  |  |
| Week 1                          | Human rights in ancient civilizations (Greek and Roman civilizations)         |  |  |  |  |
| Week 2                          | The position of divine laws on human rights.                                  |  |  |  |  |
| Week 3                          | Human rights in international constitutions.                                  |  |  |  |  |
| Week 4                          | The United Nations Charter and its stance on human rights.                    |  |  |  |  |
| Week 5                          | Human rights in international organizations.                                  |  |  |  |  |
| Week 6                          | Human rights in non-governmental organizations.                               |  |  |  |  |
| Week 7                          | Safeguards for human rights.                                                  |  |  |  |  |
| Week 8                          | The concept of international humanitarian law and its historical development. |  |  |  |  |
| Week 9                          | The concept, origin, and evolution of democracy.                              |  |  |  |  |
| Week 10                         | The relationship between Islam and democracy.                                 |  |  |  |  |
| Week 11                         | Characteristics of democracy.                                                 |  |  |  |  |
| Week 12                         | Forms and types of democracy.                                                 |  |  |  |  |
| Week 13                         | Political components of democracy.                                            |  |  |  |  |
| Week 14                         | Democracy and education.                                                      |  |  |  |  |
| Week 15                         | Preparatory week before the final exam                                        |  |  |  |  |

| Learning and Teaching Resources |                                                                                                                                                                  |                              |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
|                                 | Text                                                                                                                                                             | Available in the<br>Library? |  |  |  |
| <b>Required Texts</b>           | Dr. Abed Al-Jabri Muhammad Human Rights and<br>Democracy 2006                                                                                                    | Yes                          |  |  |  |
| Recommended<br>Texts            | rights man And democracy numbers A. M. D. Ghassan<br>generous Attractive and A. M. Amjad beautiful The<br>worshippers Taste For the year2018                     | No                           |  |  |  |
| Websites                        | "Ways And education And culture rights man", publication on r<br>International)The Internet(on the site<br>Electronic <b>http://ghrorg-learning.blogspot.com</b> | network Information          |  |  |  |

| Module 7<br>Subject information          |        |                   |                              |                                                       |     |  |
|------------------------------------------|--------|-------------------|------------------------------|-------------------------------------------------------|-----|--|
| Module Title                             |        | Thermodynan       | nics                         |                                                       |     |  |
| Module Type                              |        | Core              |                              | ⊠Theory                                               |     |  |
| Module Code                              |        | <b>RETE 104</b>   |                              | ⊔ Lecture<br>⊠ Lab                                    |     |  |
| ECTS Credits                             | 9      |                   |                              | ⊠ Tutorial                                            |     |  |
| SWL (hr/sem)                             |        | 225               |                              |                                                       |     |  |
| Module Level                             |        | 1                 | Semester of Delivery 2       |                                                       | 2   |  |
| Administration Depart                    | ment   | RETE              | College                      | College of Oil & Gas Techniques<br>Engineering/Kirkuk |     |  |
| Module Leader                            | Naseer | Tawfeeq Alwan     | e-mail                       | naseer.t.alwan@ntu.edu.iq                             |     |  |
| Module Leader's Acad. Title Lecturer     |        | Lecturer          | Module Lead<br>Qualification | ler's                                                 | PhD |  |
| Module Tutor Name (if available)         |        | e-mail            |                              |                                                       |     |  |
| Peer Reviewer Name                       |        | e-mail            |                              |                                                       |     |  |
| Scientific Committee Approval 09/14/2023 |        | Version<br>Number | 1                            |                                                       |     |  |

| Relation with other Modules |          |          |  |  |  |
|-----------------------------|----------|----------|--|--|--|
| Prerequisite module         | None     | Semester |  |  |  |
| Co-requisites module        | Semester |          |  |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Module Aims                                            | <ol> <li>Understanding energy and its transformation: Thermodynamics deals with<br/>the study of energy and its conversion from one form to another. By<br/>studying thermodynamics, engineers gain a fundamental understanding of<br/>how energy behaves and can be manipulated.</li> <li>Analyzing and optimizing energy systems: Engineers use thermodynamics<br/>to analyze and optimize the performance of energy systems, such as<br/>power plants, engines, refrigeration systems, and HVAC systems. They can<br/>determine the efficiency, energy transfer rates, and overall performance<br/>of these systems, leading to improvements in design and operation.</li> <li>Designing and improving energy-related devices: Thermodynamics<br/>provides engineers with the knowledge necessary to design and improve<br/>energy-related devices, including combustion engines, turbines, heat<br/>exchangers, and renewable energy systems. By understanding the<br/>principles of thermodynamics, engineers can enhance the efficiency,<br/>reliability, and sustainability of these devices.</li> </ol> |  |  |  |  |
| Module Learning<br>Outcomes                            | <ul> <li>(LO1) Describe basic concepts of Thermodynamics <ul> <li>restate definition of system, surrounding, closed and open system, extensive and intensive properties.</li> <li>Calculate absolute and gage pressure, and absolute temperature.</li> <li>Calculate changes in kinetic, potential, enthalpy and internal energy.</li> </ul> </li> <li>(LO2) arrange the ideal and real gas equations of state.</li> <li>(LO3) Formulate the first law of thermodynamics for a closed systems and arrange the change in energy in the closed systems via heat and work transfer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                        | <ul> <li>(LO4) Apply first law of thermodynamics for closed systems and construct conservation of mass and energy equations.</li> <li>(LO5) Formulate the first law of thermodynamics for a closed systems and arrange the change in energy in the closed systems via heat and work transfer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                        | <ul> <li>(LO6) Apply the first law of thermodynamics to the open systems.</li> <li>describe steady-flow open system.</li> <li>Apply the first law of thermodynamics to the nozzles, diffusers, turbines, compressors, throttling valves, mixing chambers, heat exchangers, pipe and duct flow.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

|                     | <ul> <li>(LO7) judge the properties of pure substances</li> <li>judge the state of the pure substances such as compressed liquid, saturated liquid-vapor mixture and superheated vapor using property diagrams and tables.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | <ul> <li>(LO7) assess thermodynamic applications using second law of thermodynamics.</li> <li>Calculate thermal efficiency and coefficient of performance for heat engines, refrigerators and heat pumps.</li> <li>restate perpetual-motion machines, reversible and irreversible processes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | (LO8) On successful completion of the module, students should be able to show<br>experience and enhance discipline-specific practical skills in carrying out Level 1<br>practical exercises in Thermodynamics following instruction, using test and<br>measurement equipment and techniques, collecting and recording data,<br>Estimating accuracy, assessing errors, and using safe work systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | (LO9) Problem solving skills                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | (LO10) Numeracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | (LO11) Communication skills                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | (LO12) IT skills                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Indicative Contents | <ul> <li>Indicative content includes the following.</li> <li>Conservation of Energy: The total energy of an isolated system remains constant over time. The energy may change its form or be transferred between different components of the system, but the total energy within the system remains constant.</li> <li>The ideal gas is a theoretical model that simplifies the behavior of gases under certain conditions. While real gases deviate from ideal behavior at high pressures and low temperatures, the ideal gas concept provides a useful framework for understanding gas properties</li> <li>Ideal Gas Law: The ideal gas law is an equation that relates the pressure (P), volume (V), temperature (T), and number of moles (n) of an ideal gas. It can be expressed as PV = nRT, where R is the ideal gas constant. This equation shows that, at a constant temperature, the product of pressure and volume is proportional to the number of moles of gas.</li> <li>Boyle's Law: Boyle's law describes the relationship between the pressure and volume of an ideal gas at constant temperature. It states that the</li> </ul> |
|                     | <ul> <li>and volume of an ideal gas at constant temperature. It states that the pressure of an ideal gas is inversely proportional to its volume: P1V1 = P2V2.</li> <li>Charles's Law: Charles's law relates the volume and temperature of an ideal gas at constant pressure. It states that the volume of an ideal gas is directly proportional to its absolute temperature: V1/T1 = V2/T2.</li> <li>Avogadro's Law: Avogadro's law states that equal volumes of different gases, at the same temperature and pressure, contain an equal number of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| molecules. It is that the volume of an ideal gas is directly proportional to the number of moles of the gas: $V1/n1 = V2/n2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Energy Conservation Equation: The first law can be mathematically expressed using the energy conservation equation. It states that the change in internal energy of a system is equal to the heat added to the system minus the work done by the system: ΔU = Q - W, where ΔU represents the change in internal energy, Q represents the heat added to the system, and W represents the work done by the system.</li> <li>The second law of thermodynamics is a fundamental principle in thermodynamics that governs the direction and limitations of energy transfer and conversion</li> </ul> |
| <ul> <li>The second law sets an upper limit on the efficiency of heat engines,<br/>which are devices that convert heat energy into mechanical work. The<br/>Carnot efficiency represents the maximum efficiency that can be achieved<br/>by an ideal heat engine operating between two temperature extremes. It<br/>depends only on the temperatures of the heat source and heat sink and is<br/>given by (T1 - T2) / T1, where T1 is the temperature of the heat source<br/>and T2 is the temperature of the heat sink.</li> </ul>                                                                      |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | Teaching Method 1 - Lectures<br>Description:<br>Attendance Recorded: Yes<br>Teaching Method 2 - Asynchronous on-line course materials<br>Description: Podcasts, videos and articles in thermodynamics<br>Attendance Recorded: No<br>Unscheduled Directed Student Hours (time spent away from the timetabled<br>sessions but directed by the teaching staff).<br>Teaching Method 3 - Tutorials<br>Description:<br>Attendance Recorded: Yes<br>Teaching Method 4 - Practical<br>Description: Practical homework assignments<br>Attendance Recorded: No<br>Unscheduled Directed Student Hours (time spent away from the timetabled<br>sessions but directed by the teaching staff). |  |  |  |

| Student Workload (SWL)                                             |     |                                                     |     |  |  |
|--------------------------------------------------------------------|-----|-----------------------------------------------------|-----|--|--|
| Structured SWL (h/sem)<br>Regular student load during the semester | 108 | Structured SWL (h/w)<br>Regular weekly student load | 7.2 |  |  |
| Unstructured SWL (h/sem)                                           | 117 | Unstructured SWL (h/w)                              | 7.8 |  |  |

| Irregular student load during the semester | Irregular student load per week |  |
|--------------------------------------------|---------------------------------|--|
| Total SWL (h/sem)                          |                                 |  |
| The student's total academic load during   | 225                             |  |
| the semester                               |                                 |  |

| Module Evaluation       |                 |             |                   |                      |                            |  |
|-------------------------|-----------------|-------------|-------------------|----------------------|----------------------------|--|
|                         |                 | Time/Number | Weight<br>(Marks) | Week Due             | Relevant Learning Outcome  |  |
|                         | Quizzes         | 5           | 10% (10)          | 3,5,7,9,11<br>and 15 | LO #2, #3,#5,#7,#9 and #11 |  |
| Formative<br>assessment | Assignments     | 5           | 10% (10)          | 2,6,8 and<br>12      | LO #1, #4, #6and #10       |  |
|                         | Projects / Lab. | 4           | 20% (10)          | Continuous           | All                        |  |
|                         | Report          |             |                   |                      |                            |  |
| Summative               | Midterm Exam    | 2 hours     | 10%(10)           | 7                    | LO #1 - #5                 |  |
| assessment              | Final Exam      | 3 hours     | 50%(50)           | 16                   | All                        |  |
| Total assessment        |                 |             | 100% (100         |                      |                            |  |
|                         |                 |             | Marks)            |                      |                            |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                             |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Week 1                          | Definition of energy – kinetic & potential energies –work – power flow & internal energy<br>– enthalpy-energy diagram                       |  |  |  |
| Week2                           | Definition of state – property, process – property diagrams -1st law of thermodynamic, (P- V) diagram.                                      |  |  |  |
| Week3                           | Ideal gases – ideal gasses laws (boyle, Charles, Gaylosic), gas constant – Avogadro law<br>specific heat at constant volume & pressure      |  |  |  |
| Week4                           | Energy analysis of closed system, particular closed system processes – constant volume, constant pressure and constant temperature process. |  |  |  |
| Week5                           | Particular closed system processes – adiabatic and polytrophic processes                                                                    |  |  |  |
| Week6                           | Mass and energy analysis of control systems                                                                                                 |  |  |  |
| Week7                           | Properties of pure substances and Phase change process of pure substances                                                                   |  |  |  |
| Week8                           | Steam formation process, Dryness fraction, Liquid line, Steam line and Wet steam                                                            |  |  |  |
| Week9                           | Calculation of steam, steam table                                                                                                           |  |  |  |
| Week 10                         | Steam process with drawing each processes on (PV)diagram                                                                                    |  |  |  |
| Week 11                         | Second law of thermodynamic Statement of (Kelvin, Planck & Clausius statement)                                                              |  |  |  |
| Week 12                         | Heat engine, refrigerator and heat pump                                                                                                     |  |  |  |

| Week 13 | Carnot and reverse Carnot cycle                                                      |
|---------|--------------------------------------------------------------------------------------|
| Week 14 | Entropy, Entropy change of ideal gases and isentropic process                        |
| Week 15 | Entropy change of pure substances and Isentropic efficiencies of steady-flow devices |

| Learning and Teaching Resources |                                                                |                           |  |  |
|---------------------------------|----------------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                           | Available in the Library? |  |  |
| Required Texts                  | Applied Thermodynamics for engineering technology By TD EASTOP | Yes                       |  |  |
| Recommended Texts               | Thermodynamics An engineering approach By Yunus A.<br>Cengel   | Yes                       |  |  |
|                                 | Fundamentals of engineering thermodynamics By Michael J. Moran | No                        |  |  |

| Module8<br>Subject information        |           |            |                                                    |                            |                 |  |  |
|---------------------------------------|-----------|------------|----------------------------------------------------|----------------------------|-----------------|--|--|
| Module Title                          |           | Computer   |                                                    |                            | Module Delivery |  |  |
| Module Type                           |           | Basic      |                                                    |                            | ⊠Theory         |  |  |
| Module Code                           |           | NTU 102    |                                                    |                            | □Lecture        |  |  |
| ECTS Credits                          |           | 3          |                                                    |                            | ⊠Lab            |  |  |
|                                       |           |            |                                                    |                            | □Tutorial       |  |  |
| SWL (hr/sem)                          |           | 75         |                                                    |                            | □Practical      |  |  |
|                                       |           |            |                                                    |                            | □Seminar        |  |  |
| Module Level                          |           | 1          | Semester of Delivery                               |                            | 2               |  |  |
| Administering Department              |           | RETE       | College of Oil & Gas Technic<br>Engineering/Kirkuk |                            | chniques        |  |  |
| Module Leader                         |           |            | e-mail                                             | Email                      | Email           |  |  |
| Module Leader's Acad. Title           |           |            | Module Le                                          | ule Leader's Qualification |                 |  |  |
| Module Tutor                          | ile Tutor |            | e-mail                                             |                            |                 |  |  |
| Peer Reviewer Name Name               |           | e-mail     | Email                                              | Email                      |                 |  |  |
| Scientific Committee Approval<br>Date |           | 06/01/2023 | Version Number 1.0                                 |                            |                 |  |  |

| <b>Relation with other Modules</b>      |      |          |  |  |  |
|-----------------------------------------|------|----------|--|--|--|
| <b>Relationship with other subjects</b> |      |          |  |  |  |
| Prerequisite module                     | None | Semester |  |  |  |
| Co-requisites module                    | None | Semester |  |  |  |

| Modul                       | e Aims, Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ol> <li>To develop problem solving skills and understanding of computer skills through<br/>the application of techniques.</li> <li>Acquire the ideas of how computer works by understanding the basic functions.</li> </ol>                                                                                                                                                                                                                                                                   |
| Subject objectives          | <ol> <li>Acquire the ideas of how computer works by understanding the basic functions of input, output and storage devices</li> <li>This program is meant for those students who have low-level literacy in computer use and only partial understanding of the functions of a computer. And so the students are introduced to this program to improve computer literacy</li> </ol>                                                                                                             |
| Module Learning<br>Outcomes | Students completing this module will be able to:<br>– Understand basic computer terminology;– Identify components of a computer<br>and peripheral devices;– Perform the basic computer functions by using a<br>desktop or a laptop;– Develop an understanding of word processing capabilities<br>of a computer;– Understand the concept and usage of the Internet and e-mails;–<br>Use the acquired skills to pursue employment opportunities;– Enhance their<br>computer literacy.            |
| Indicative Contents         | <ul> <li>Indicative content includes the following.</li> <li>MS Office<br/>Word, Excel, Outlook, Power point, Access</li> <li>Google Drive<br/>Docs, Drive, Forms, Gmail, Sheets</li> <li>Spreadsheets<br/>Excel, Google Drive, Open Office, pivot tables, vertical lookups, macros</li> <li>Email<br/>Outlook, Gmail, mail merge, filters, folders</li> <li>Presentations<br/>PowerPoint, Google slides, Tableau, Keynote</li> <li>Operating systems<br/>MacOS, Microsoft Windows,</li> </ul> |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students. |  |  |  |

| Student Workload (SWL)                                                        |             |                                                           |     |  |  |
|-------------------------------------------------------------------------------|-------------|-----------------------------------------------------------|-----|--|--|
| The student's aca                                                             | utilit loau | is calculated for 15A week                                |     |  |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester         | 33          | Structured SWL (h/w)<br>Regular weekly student load       | 2.2 |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 42          | Unstructured SWL (h/w)<br>Irregular student load per week | 2.8 |  |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester | 75          |                                                           |     |  |  |

| Module Evaluation                                                 |               |   |         |                  |                        |  |  |
|-------------------------------------------------------------------|---------------|---|---------|------------------|------------------------|--|--|
| Time/Nu<br>mberWeight (Marks)Week DueRelevant Learning<br>Outcome |               |   |         |                  |                        |  |  |
| Formative<br>assessment                                           | Quizzes       | 5 | 10%(10) | 3,6, 8,12 and 14 | LO #1, #2,#4,#5 and #6 |  |  |
| 40%                                                               | Assignments   | 4 | 10%(10) | 2,5,10 and 13    | LO #2, #4,#5 and #7    |  |  |
|                                                                   | projects/Lab. | 4 | 20%(20) | Continuous       | All                    |  |  |

|                   | Report       |                  |         |    |            |
|-------------------|--------------|------------------|---------|----|------------|
| Summative         | Midterm Exam | 2hr              | 10%(10) | 7  | LO #1 - #3 |
| assessment<br>60% | Final Exam   | 3hr              | 5%(50)  | 16 | All        |
| Total assessment  |              | 100% (100 Marks) |         |    |            |

|         | Delivery Plan (Weekly Syllabus)                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Material Covered                                                                                                                                          |
| Week 1  | Introduction - What is Computer,                                                                                                                          |
| Week 2  | Basic applications of Computer                                                                                                                            |
| Week 3  | Components of Computer System,                                                                                                                            |
| Week 4  | Central Processing Unit (CPU),                                                                                                                            |
| Week 5  | Concepts of Hardware and Software                                                                                                                         |
| Week 6  | Introduction to Internet, WWW and web browsers                                                                                                            |
| Week 7  | Operating Computer using GUI Based Operating System                                                                                                       |
| Week 8  | Basics of Popular Operating Systems; The User Interface                                                                                                   |
| Week 9  | Using right Button of the Mouse and Moving Icons on the screen, Use of Common Icons, Status Bar,<br>Using Menu and Menu-selection, Running an Application |
| Week 10 | Viewing of File, Folders and Directories, Creating and Renaming of files and folders,                                                                     |
| Week 11 | Opening and closing of different Windows; Using help; Creating Short cuts,                                                                                |
| Week 12 | Basics of OS Setup                                                                                                                                        |
| Week 13 | Common utilities                                                                                                                                          |
| Week 14 | Understanding Word Processing:                                                                                                                            |
| Week 15 | Using Spread Sheet                                                                                                                                        |

| Delivery Plan (Weekly Lab. Syllabus) |                                                     |  |  |
|--------------------------------------|-----------------------------------------------------|--|--|
|                                      | Material Covered                                    |  |  |
| Week 1                               | Knowing computer                                    |  |  |
| Week 2                               | Operating Computer using GUI Based Operating System |  |  |
| Week 3                               | Understanding Word Processing                       |  |  |
| Week 4                               | Using Spread Sheet                                  |  |  |
| Week 5                               | Introduction to Internet, WWW and web browsers      |  |  |
| Week 6                               | Making small presentation                           |  |  |
| Week 7                               | Basics of OS Setup                                  |  |  |

| Learning and Teaching Resources |                                                                      |                              |  |  |  |
|---------------------------------|----------------------------------------------------------------------|------------------------------|--|--|--|
|                                 | Text                                                                 | Available in the<br>Library? |  |  |  |
| Required Texts                  |                                                                      |                              |  |  |  |
| Recommended Texts               | Beginning Programming All-in-One For Dummies<br>Author: Wallace Wang | No                           |  |  |  |
| Websites                        | https://www.w3schools.in/computer-fundamentals/output-devi           | ces                          |  |  |  |

| Module9<br>Subject information |                                  |                 |  |  |  |
|--------------------------------|----------------------------------|-----------------|--|--|--|
| Module Title                   | Mechanics Engineering /Dynamic's | Module Delivery |  |  |  |
| Module Type                    | Core                             |                 |  |  |  |

| Module Code                           | <b>RETE 101</b>           |              |                                   |                                                       | ⊠Theory    |     |  |
|---------------------------------------|---------------------------|--------------|-----------------------------------|-------------------------------------------------------|------------|-----|--|
| ECTS Credits                          | 8                         |              |                                   |                                                       | □Lecture   |     |  |
|                                       |                           |              |                                   | 🗆 Lab                                                 |            |     |  |
|                                       |                           | 200          |                                   |                                                       | ⊠Tutorial  |     |  |
| SWL (hr/sem)                          |                           |              |                                   |                                                       | □Practical |     |  |
|                                       |                           |              |                                   |                                                       | □Seminar   |     |  |
| Module Level                          | 1                         |              | Semester o                        | f Delivery 2                                          |            | 2   |  |
| Administering De                      | nistering Department RETE |              | College                           | College of Oil & Gas Techniques<br>Engineering/Kirkuk |            |     |  |
| Module Leader                         |                           |              | e-mail                            |                                                       |            |     |  |
| Module Leader's                       | Acad. Title Lecturer      |              | Module Leader's Qualification PhD |                                                       |            | PhD |  |
| Module Tutor                          |                           |              | e-mail                            |                                                       |            |     |  |
| Peer Reviewer Name Name               |                           | e-mail Email |                                   |                                                       |            |     |  |
| Scientific Committee Approval<br>Date |                           | 06/01/2023   | Version Number 1.0                |                                                       |            |     |  |

| <b>Relation with other Modules</b> |      |          |  |
|------------------------------------|------|----------|--|
| Prerequisite module                | None | Semester |  |
| Co-requisites module               | None | Semester |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Module Aims                                            | This module is designed to impart essential mechanical science knowledge applicable<br>to all engineering disciplines. It also serves as a foundational steppingstone for advanced<br>studies in mechanical engineering, with a particular emphasis on dynamics. The course<br>equips students with the fundamental knowledge and understanding of mechanical and<br>physics principles and methodologies necessary to support their education in various<br>mechanical and related engineering fields. Topics covered in the course encompass a<br>wide range of dynamics mechanics topics, including various types of motion (linear,<br>circular, and projectile) as well as concepts related to force momentum impulse |  |  |  |
|                                                        | rotational motion, work, power, torque, angular momentum, and energy. Throughout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |

|                             | the course, students will learn and apply various analytical and numerical methods for<br>addressing typical mechanical structures and problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Module Learning<br>Outcomes | <ol> <li>Grasp and employ fundamental terminology for describing the motion of<br/>particles, vector functions, and the fundamental principles of Newtonian<br/>mechanics.</li> <li>Resolve mechanical problems in one dimension involving forces such as<br/>gravity, friction, and air resistance.</li> <li>Comprehend the concept of terminal velocity and utilize it to solve one-<br/>dimensional mechanics problems.</li> <li>Apply Newton's second law in vector form to address problems in multiple<br/>dimensions.</li> <li>Resolve problems concerning the motion of a projectile in the absence of air<br/>resistance.</li> <li>Explore how displacement, velocity, and acceleration vary with time in linear<br/>motion.</li> <li>Examine how displacement, velocity, and acceleration change with time in<br/>curvilinear motion.</li> <li>Provide a concise summary of key dynamics components.</li> <li>Elaborate on the concepts of work and energy.</li> <li>Identify power and efficiency considerations for mechanical components and<br/>their practical applications.</li> </ol> |  |  |
| Indicative Contents         | <ul> <li>Indicative content includes the following:</li> <li>Its objective is to familiarize students with the analysis of moving mechanical bodies by imparting an understanding of the theories and laws governing mechanical systems.</li> <li>Introducing students to this curriculum complements the field of engineering mechanics.</li> <li>It serves as an introductory foundation for materials engineering, equipping students with essential knowledge required to achieve optimal design for engineering structures and materials capable of withstanding various loads and environmental conditions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

| Learning and Teaching Strategies |                                                                                                                                                                                              |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                  |                                                                                                                                                                                              |  |  |  |
|                                  | Teaching and learning strategies for a Dynamics module in engineering are designed to                                                                                                        |  |  |  |
|                                  | help students grasp complex concepts related to motion, forces, and mechanical syste                                                                                                         |  |  |  |
|                                  | effectively. Here are the common strategies used in this module:                                                                                                                             |  |  |  |
| Strategies                       | • Lectures: Traditional lectures provide an overview of key concepts and theories in dynamics. Instructors use visual aids, examples, and real-world applications to explain complex topics. |  |  |  |

|  | • <b>Tutorials and Workshops:</b> Small group tutorials or workshops allow students to work on problem-solving exercises and engage in discussions. Tutors can provide guidance and clarification on challenging concepts. |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | • <b>Computer Simulations:</b> Simulation software and tools help students visualize and analyze dynamic systems. They can explore how different variables impact the behavior of mechanical systems.                      |
|  | • <b>Case Studies:</b> Analyzing real-world case studies involving dynamic systems and structures helps students see the practical applications of the concepts they learn in class.                                       |
|  | • <b>Group Projects:</b> Collaborative projects encourage teamwork and problem-<br>solving. Students may work together to design, analyze, and present solutions<br>for complex engineering problems.                      |
|  | • <b>Homework Assignments:</b> Regular assignments challenge students to practice problem-solving and reinforce their understanding of course materials. Instructors can provide feedback and discuss solutions in class.  |
|  | • <b>Peer Teaching and Learning:</b> Encouraging students to explain concepts to their peers can deepen their understanding and enhance communication skills.                                                              |
|  | • Self-Study and Reading: Students are encouraged to read textbooks, research papers, and additional materials to supplement their understanding of course topics.                                                         |
|  | • Assessment: Regular quizzes, tests, and examinations assess students' understanding and mastery of course content. These assessments help identify areas where additional support may be needed.                         |
|  | • <b>Online Resources:</b> Course materials, lecture notes, and additional resources are often made available online, allowing students to review and reinforce their learning independently.                              |
|  | • <b>Problem-Solving Sessions:</b> Dedicated problem-solving sessions focus on challenging tackling exercises and developing problem-solving skills                                                                        |

| Student Workload (SWL)                                                |    |                                                     |     |  |
|-----------------------------------------------------------------------|----|-----------------------------------------------------|-----|--|
| The student's academic load is calculated for 15 weeks.               |    |                                                     |     |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester | 78 | Structured SWL (h/w)<br>Regular weekly student load | 5.2 |  |

| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 122 | Unstructured SWL (h/w)<br>Irregular student load per week | 8.13 |
|-------------------------------------------------------------------------------|-----|-----------------------------------------------------------|------|
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester |     | 200                                                       |      |

| Module Evaluation |              |                 |                  |                |                              |
|-------------------|--------------|-----------------|------------------|----------------|------------------------------|
|                   |              | Time/Nu<br>mber | Weight (Marks)   | Week Due       | Relevant Learning<br>Outcome |
| Formative         | Quizzes      | 5               | 20% (20)         | 2, 4, 8,12     | LO #1, 2, 10 and 11          |
| assessment        | Assignments  | 2               | 20% (20)         | 3, 5, 7, 9, 13 | LO # 3, 4, 6 and 7           |
| Summative         | Midterm Exam | 2hr             | 10% (10)         | 10             | LO #1-9                      |
| assessment        | Final Exam   | 3hr             | 50% (50)         | 16             | All                          |
| Total assessment  |              |                 | 100% (100 Marks) |                |                              |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                     |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                 | Material Covered                                                                                                                                    |  |
| Week 1-2                        | Introduction of Dynamic Rectilinear Motion Plane curvilinear motion Rectangular<br>Coordinates Normal and tangential coordinates Polar coordinates. |  |
| Week 3                          | Space curvilinear motion Space motion Relative motion Constrained motion                                                                            |  |
| Week 4                          | Generalized Newton's Second                                                                                                                         |  |
| Week 5-7                        | Force, Mass, Acceleration Newton's second law Equation of motion and solution problem                                                               |  |
| Week 8-9                        | Work and kinetic energy Potential energy                                                                                                            |  |
| Week 10                         | Mid-term exam                                                                                                                                       |  |

| Week 11 | Linear Impulse and Linear momentum         |
|---------|--------------------------------------------|
|         |                                            |
| Week 12 | Work-Energy Impulse- Momentum              |
|         |                                            |
| Week 13 | Conservation of Energy and Momentum        |
|         |                                            |
| Week 14 | Rotation Absolute motion Relative velocity |
|         |                                            |
| Week 15 | Preparatory week before the final exam     |
|         |                                            |
| Week 16 | The final exam week                        |
|         |                                            |

| Learning and Teaching Resources |                                                                           |                              |  |  |
|---------------------------------|---------------------------------------------------------------------------|------------------------------|--|--|
|                                 | Text                                                                      | Available in the<br>Library? |  |  |
| Required Texts                  | 1. Engineering Mechanics Dynamics, JL Meriam, LG<br>Kraige, Sixth Edition | Yes                          |  |  |
| Recommended Texts               | . 2. Engineering Mechanics Dynamics, R. C. Hibbeler,<br>Twelfth Edition   | yes                          |  |  |
| Websites                        | https://www.noor-book.com/en/ebook-Engineering-Mech<br>pdf                | anics-Dynamics-14th-         |  |  |

| Module10<br>Subject information |                     |                 |  |  |
|---------------------------------|---------------------|-----------------|--|--|
| Module Title                    | Engineering Drawing | Module Delivery |  |  |
| Module Type                     | Core                | ⊠Theory         |  |  |
| Module Code                     | COGTEK 101          | □Lecture        |  |  |
| ECTS Credits                    | 8                   | ⊠Lab            |  |  |
|                                 |                     | □Tutorial       |  |  |
| SWL (hr/sem)                    | 200                 | □Practical      |  |  |
|                                 |                     | □Seminar        |  |  |

| Module Level                          |  | 1          | Semester o | f Delivery                                            |                           | 2          |
|---------------------------------------|--|------------|------------|-------------------------------------------------------|---------------------------|------------|
| Administration Department             |  | RETE       | College    | College of Oil & Gas Techniques<br>Engineering/Kirkuk |                           | Fechniques |
| Module Leader Naseer Tawf             |  | eeq Alwan  | e-mail     | naseer.                                               | naseer.t.alwan@ntu.edu.iq |            |
| Module Leader's Acad. Title           |  | Lecturer   | Module Le  | Leader's Qualification PhD                            |                           | PhD        |
| Module Tutor Name (if available)      |  | ilable)    | e-mail     |                                                       |                           |            |
| Peer Reviewer Name                    |  |            | e-mail     |                                                       |                           |            |
| Scientific Committee Approval<br>Date |  | 06/01/2023 | Version N  | umber                                                 | 1.0                       |            |

| <b>Relation with other Modules</b> |      |          |  |  |
|------------------------------------|------|----------|--|--|
| Prerequisite module                | None | Semester |  |  |
| Co-requisites module               | None | Semester |  |  |

| Module              | e Aims, Learning Outcomes and Indicative Contents                                                                                                           |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Module Aims         | <ol> <li>Introducing the student to the importance of engineering drawing and its<br/>relationship to other engineering subjects.</li> </ol>                |  |  |  |  |
| Mount Anns          | 5. Develop the student's mental abilities in drawing simple and complex shapes.                                                                             |  |  |  |  |
|                     | 6. Expanding the horizons of the student's imagination of geometric shapes and identifying their components, parts, mechanics, and their working principles |  |  |  |  |
| Module Learning     | 7. To familiarize the student with the importance of engineering drawing                                                                                    |  |  |  |  |
| Outcomes            | 8. To teach the student how to imagine geometric shapes.                                                                                                    |  |  |  |  |
|                     | 9. To distinguish the mechanical components and parts and their working                                                                                     |  |  |  |  |
|                     | principle.                                                                                                                                                  |  |  |  |  |
| Indicative Contents | Indicative content includes the following.                                                                                                                  |  |  |  |  |
| Indicative Contents | Part A -Principles of drawing                                                                                                                               |  |  |  |  |
|                     | To develop the student's mental ability to draw simple and complex shapes.                                                                                  |  |  |  |  |

| The student learns how to develop a strategy and sequence for drawing, assembling and deconstructing geometric shapes. Part B -Orthographic Projections                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The student learns to draw geometric projections and set geometric dimensions.<br>Part C -Cutting theory.                                                                                         |
| To develop the student's mental ability to draw simple and complex shapes Cutting theory- Shapes and lines of cuts by type of material.                                                           |
| Part D -Drawing stereoscopic shapes using 3D graphics Instructions.<br>Prepare to use instructions in drawing three-dimensional geometric shapes and modifications of three-dimensional graphics. |
|                                                                                                                                                                                                   |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this module<br>is to encourage students' participation in the exercises, while at the same time refining<br>and expanding their critical thinking skills. This will be achieved through classes,<br>interactive tutorials and by considering type of simple experiments involving some<br>sampling activities that are interesting to the students. |  |  |  |

| Student Workload (SWL)                                                    |     |                                                           |      |  |
|---------------------------------------------------------------------------|-----|-----------------------------------------------------------|------|--|
| The student's academic load is calculated for 15A week                    |     |                                                           |      |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester     | 63  | Structured SWL (h/w)<br>Regular weekly student load       | 4.2  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester | 137 | Unstructured SWL (h/w)<br>Irregular student load per week | 9.13 |  |

| Module Evaluation       |                |                  |                |                      |                                |
|-------------------------|----------------|------------------|----------------|----------------------|--------------------------------|
|                         |                | Time/Nu<br>mber  | Weight (Marks) | Week Due             | Relevant Learning<br>Outcome   |
|                         | Quizzes        | 5                | 10% (10)       | 2,5,7,9.and<br>13    | LO #1, #5, #6, #11, and<br>#13 |
| Formative<br>assessment | Assignments    | 5                | 10% (10)       | 3, 5, 8,10 and<br>14 | LO #3, 4, 6, 7, and 10         |
|                         | Projects /Lab. | 10               | 20% (20)       | Continuous           | All                            |
|                         | Report         |                  |                |                      |                                |
| Summative               | Midterm Exam   | 2 hours          | 10% (10)       | 7                    | LO #1 - #4                     |
| assessment              | Final Exam     | 3 hours          | 50% (50)       | 16                   | All                            |
| Total assessment        |                | 100% (100 Marks) |                |                      |                                |

| Delivery Plan (Weekly Syllabus) |                                                                                                  |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
|                                 | Material Covered                                                                                 |  |  |  |
| Week 1                          | Principles of drawing                                                                            |  |  |  |
| Week 2                          | Title Block                                                                                      |  |  |  |
| Week 3                          | Drawing geometric shapes, the basic                                                              |  |  |  |
| Week 4                          | Graphic Adjustments - Computer Graphics Aids                                                     |  |  |  |
| Week 5                          | Geometric line- Types of engineering drawing lines- Geometric operations- Dimensional placement. |  |  |  |
| Week 6                          | Orthographic Projections                                                                         |  |  |  |
| Week 7                          | Mid-term Exam                                                                                    |  |  |  |

| Week 8  | Principle of First Angle Projection                                  |
|---------|----------------------------------------------------------------------|
| Week 9  | Principle of Third Angle Projection                                  |
| Week 10 | The conclusion of a third projection from two known locations.       |
| Week 11 | Cutting theory- Shapes and lines of cuts by type of material.        |
| Week 12 | Drawing of projections cut from a specific site                      |
| Week 13 | Drawing of partially cut elevations. Drawing of semi-cut elevations. |
| Week 14 | 3D Coordinates Drawing Using AutoCAD                                 |
| Week 15 | 3D Solid Primitive Drawing Using AutoCAD                             |
| Week 16 | Preparatory week before the final exam                               |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                                  |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------|--|--|--|
|                                      | Material Covered                                                                 |  |  |  |
| Week 1                               | Lab 1: Introduction to principles of drawing Using AutoCAD                       |  |  |  |
| Week 2                               | Lab 2: drawing Title Block Using AutoCAD                                         |  |  |  |
| Week 3                               | Lab 3: Drawing Commands with Exercise                                            |  |  |  |
| Week 4                               | Lab 4: Drawing Aids Commands with Exercise                                       |  |  |  |
| Week 5                               | Lab 5: Introduction to Edit Commands with Exercise                               |  |  |  |
| Week 6                               | Lab 6: Dimensions, Layers, Line types, Colors with Exercise                      |  |  |  |
| Week 7                               | Lab7:Orthographic Projections Using AutoCAD with Exercise                        |  |  |  |
| Week 8                               | Lab 8: First angle projection Using AutoCAD with Exercise                        |  |  |  |
| Week 9                               | Lab 9: Third angle projection Using AutoCAD with Exercise                        |  |  |  |
| Week 10                              | Lab 10: Construct the view, from the two given views Using AutoCAD with Exercise |  |  |  |
| Week 11                              | Lab11: Principles of sectioning Using AutoCAD with Exercise                      |  |  |  |

| Week 12 | Lab 12: Full Section Drawing Using AutoCAD with Exercise       |
|---------|----------------------------------------------------------------|
| Week 13 | Lab 13: Half Section Drawing Using AutoCAD with Exercise       |
| Week14  | Lab 14: 3D Coordinates Drawing Using AutoCAD with Exercise     |
| Week 15 | Lab 15: 3D Solid Primitive Drawing Using AutoCAD with Exercise |
| Week16  | Preparatory week before the final exam                         |

| Learning and Teaching Resources |                                                                                                                     |                              |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
|                                 | Text                                                                                                                | Available in the<br>Library? |  |  |
| <b>Required Texts</b>           | Engineering Drawing Using AutoCAD                                                                                   | Yes                          |  |  |
| Recommended Texts               | Ashleigh Fuller, Antonio Ramirez, Douglas Smith -<br>Technical Drawing with AutoCAD 2017-SDC Publications<br>(2017) | No                           |  |  |
| Websites                        | Basic Mechanical Drawing website tutorials                                                                          |                              |  |  |

| Module11<br>Subject information   |                                   |          |                      |                                     |                                                       |       |
|-----------------------------------|-----------------------------------|----------|----------------------|-------------------------------------|-------------------------------------------------------|-------|
| Module Title ARABIC LANGUAC       |                                   |          | ЭЕ                   | E Module Delivery                   |                                                       |       |
| Module Type                       |                                   |          |                      | ⊠Theory                             |                                                       |       |
| Module Code                       |                                   |          |                      | □Lecture<br>□Lab                    |                                                       |       |
| ECTS Credits                      |                                   |          |                      | □Tutorial<br>□Practical<br>□Seminar |                                                       |       |
| SWL (hr/sem)                      |                                   |          |                      |                                     |                                                       |       |
| Module Level                      |                                   | 1        | Semester of Delivery |                                     | elivery                                               | 2     |
| Administering Department          |                                   | RETE     | College              | Co<br>En                            | College of Oil & Gas Techniques<br>Engineering/Kirkuk |       |
| Module Leader                     | Module Leader Dr. Jamal Fateh Ali |          | e-mail               | jar                                 | amal1978@ntu.edu.iq                                   |       |
| Module Leader's Acad. Title Lectu |                                   | Lecturer | Module Lo            | eade                                | er's Qualification                                    | Ph.D. |
| Module Tutor None                 |                                   | e-mail   | No                   | one                                 |                                                       |       |

| Peer Reviewer Name               |            | e-mail     |       |     |
|----------------------------------|------------|------------|-------|-----|
| <b>Review Committee Approval</b> | 06/01/2023 | Version Nu | ımber | 1.0 |

| Relation with Other Modules |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                   |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Prerequisitemodule          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Semester                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |  |  |
| Co-requisites module        | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Semester                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |  |  |
| Modul                       | e Aims, Learning Outcomes and Indicative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |  |  |
| Module Aims                 | <ol> <li>Enhance communication Effective: Aims to Empowerment Students from communication environment Arabic, whether He was that Academic And practical.</li> <li>to understand Culture Arabic: It is consid Arabic key To understand Culture Arabic students on Recognition on Heritage Arabi Multiple Cultures in the world Arabic</li> <li>Enhance Capabilities Research And the Acad Arabic Contributes in development skills Re For students, Which They can from P Discussions Academy and Production Know</li> <li>to provide Opportunities Functional: It is language Arabic skill value in market the job the job in Areas Multiple like Translation, M And education.</li> <li>Enhancing effective communication: Teaching Arabic communicate effectively in the Arab environment academic and professional contexts.</li> <li>Understanding Arab culture: Learning Arabic is a culture and its values, helping students to explore comprehend the cultural diversity within the Arab students to actively participate in academic discussions a production.</li> </ol> | learn the languag<br>on In a way effect<br>in life Daily or<br>ered to learn th<br>And its values,<br>c The rich And<br>demy: To learn the<br>search and writher<br>articipation Effect<br>ledge.<br>is considered No<br>by where Students<br>dedia, Relationshi<br>abic aims to enable<br>ent, both in daily<br>a key to understate<br>the rich Arab he<br>world.<br>hing Arabic com-<br>for students, ena-<br>nd contribute to<br>is a valuable ski | e Arabic to<br>ctive in the<br>in Context<br>e language<br>And helps<br>understand<br>he language<br>ng academy<br>ectively in<br>fastery the<br>can Arabic<br>ps General,<br>ble students<br>life and in<br>nding Arab<br>eritage and<br>htributes to<br>bling them<br>knowledge |  |  |

| ability on communication Effective: Acquire Students skills Listening And<br>Ik And reading And writing in<br>e language Arabic, Which They can from communication Fluently And<br>iderstand Content In a way correct.2<br>ability on to understand Texts And culture: Learn Students reading And<br>iderstand Texts Literary And cultural In the language<br>rabic, Which Contributes in development understand them For heritage<br>rabic, Which Contributes in development understand them For heritage<br>rabic, And analysis Cash For business Literary.<br>ability on Search And writing academy: Learn Students How to procedure<br>esearch And writing academy<br>the language Arabic, And they can from presentation papers Research And<br>ports Academy In a way distinct.<br>Interaction Cultural And social: Can Students from Participation in the<br>ciety Arabic In a way Deeper<br>and understand Traditions and values And customs Local, Which enhances<br>Juderstanding Cultural And coexistence Peaceful.<br>Effective communication skills: Students acquire listening, speaking, reading,<br>and writing skills in Arabic, enabling them to communicate fluently and<br>understanding texts and culture: Students learn to read and comprehend<br>iterary and cultural texts in Arabic, enhancing their understanding of Arab<br>peritage and developing critical analysis of literary works.<br>Research and academic writing abilities: Students learn how to conduct<br>esearch and engage in academic writing in Arabic, enabling them to present<br>esearch papers and academic reports effectively.<br>Cultural and social interaction: Students are able to actively participate in the<br>Arab community, gaining a deeper understanding of local traditions, values, and<br>pustoms, fostering cultural understanding and peaceful coexistence. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| introduction in Contents Indicative: Identification Contents Indicative And its<br>aportance, And its role in Areas<br>and specializations Miscellaneous.<br>Types And formulas Contents Indicative: Exploration various Types And<br>rmulas Contents Indicative, like<br>ables and fees The statement And points Prominent And summaries.<br>construction Contents Indicative: Techniques and strategies construction<br>ontents Indicative effective, With what in<br>at to choose Information Home, And simplify Concepts complex, And<br>ganizing Content For ease Understanding.<br>representation Visual For contents Indicative: Use Media Visual, like Fees The<br>atement<br>d plans and drawings, To submit Contents Indicative In a way attractive And<br>eful Visually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

\_\_\_\_

|            | <ul> <li>5. Examples And studies the condition: Analysis Examples And studies condition<br/>Real To understand How to Use Reference Content in Contexts different, like<br/>Reports Research And materials Marketing and resources Educational.</li> <li>1. Introduction to Indicative Contents: Defining indicative contents and<br/>understanding their significance in various fields and disciplines.</li> <li>2. Types and Formats of Indicative Contents: Exploring different types and<br/>formats of indicative contents, such as tables, charts, bullet points, and</li> </ul>                                                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul> <li>summaries.</li> <li>3. Creating Indicative Contents: Techniques and strategies for effectively creating indicative contents, including selecting key information, simplifying complex concepts, and organizing content for easy comprehension.</li> <li>4. Visual Representation of Indicative Contents: Utilizing visual aids, such as infographics, diagrams, and illustrations, to present indicative contents in an engaging and informative manner.</li> <li>5. Examples and Case Studies: Analyzing real-life examples and case studies to understand how indicative contents are used in various contexts, such as research reports, marketing materials, and educational resources.</li> </ul> |
|            | Learning and Teaching Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Strategies | <ol> <li>Interactive Language Activities: Engaging students in interactive activities<br/>such as role-plays, group discussions, and language games to practice and<br/>reinforce language skills.</li> <li>Communicative Approach: Emphasizing real-life communication and<br/>providing opportunities for students to actively engage in speaking, listening,<br/>reading, and writing tasks to develop their language proficiency.</li> <li>Authentic Materials: Incorporating authentic materials such as newspaper<br/>articles, songs, videos, and literature to expose students to real-world language<br/>usage and cultural contexts</li> </ol>                                                        |

| Student Workload (SWL)                                                       |    |                                                           |               |  |
|------------------------------------------------------------------------------|----|-----------------------------------------------------------|---------------|--|
| StructuredSWL(h/same)<br>Regular student load during the<br>semester         | 33 | Structured SWL (h/w)<br>Regular weekly student load       | (32/15)= 2.2  |  |
| UnstructuredSWL(h/same)<br>Irregular student load during the<br>semester     | 17 | Unstructured SWL (h/w)<br>Irregular student load per week | (18/15)= 1.13 |  |
| TotalSWL(h/same)<br>The student's total academic load<br>during the semester | 50 |                                                           |               |  |

| Module Evaluation       |                |                 |                  |               |                              |  |
|-------------------------|----------------|-----------------|------------------|---------------|------------------------------|--|
|                         |                | Time/Nu<br>mber | Weight (Marks)   | Week Due      | Relevant Learning<br>Outcome |  |
|                         | Quizzes        | 4               | 30% (30)         | 3,6,10 and 14 | LO #1, #2, #3, and #4        |  |
| Formative<br>assessment | Assignments    | 2               | 10% (10)         | 4 and 12      | LO #1and #4                  |  |
|                         | Projects /Lab. |                 | 0% (0)           | 0             | 0                            |  |
|                         | Report         |                 | 0% (0)           | 0             | 0                            |  |
| Summative               | Midterm Exam   | 1hr             | 10% (10)         | 7             | LO #1 - #2                   |  |
| assessment              | Final Exam     | 2hr             | 50% (50)         | 16            | All                          |  |
| Total assessme          | ent            |                 | 100% (100 Marks) |               |                              |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                                                    |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                 | Material Covered                                                                                                                                                                   |  |  |  |  |
| Week 1                          | Introduction to Language Errors:                                                                                                                                                   |  |  |  |  |
| Week 2                          | Taa Marbuta and Taa Marbuta (Bound and Open Taa): Understanding the rules and usage of the Taa Marbuta and Open Taa in Arabic language.                                            |  |  |  |  |
| Week 3                          | Hamzat Al-Wasl and Al-Qat' (Hamza of Connection and Hamza of Disconnection):<br>Differentiating between Hamzat Al-Wasl and Al-Qat' and their respective roles in<br>pronunciation. |  |  |  |  |
| Week 4                          | Alif Al-Maddooda and Alif Al-Muqassara Writing Rules: Exploring the rules for writing Alif Al-Maddooda (elongated Alif) and Alif Al-Muqassara (shortened Alif).                    |  |  |  |  |
| Week 5                          | Solar and Lunar Letters: Identifying the distinction between solar and lunar letters in Arabic pronunciation.                                                                      |  |  |  |  |
| Week 6                          | Adad (Numbers): Learning about the numerical system in Arabic and its usage.                                                                                                       |  |  |  |  |
| Week 7                          | Verbs: Understanding verb conjugation and the different verb forms in Arabic.                                                                                                      |  |  |  |  |
| Week 8                          | Parts of Speech: Exploring the different parts of speech, including nouns, verbs, adjectives, adverbs, etc.                                                                        |  |  |  |  |
| Week 9                          | Meanings of Prepositions: Examining the meanings and usage of prepositions in Arabic.                                                                                              |  |  |  |  |
| Week 10                         | Common Language Errors: Analyzing common language errors and their applications in practical contexts.                                                                             |  |  |  |  |
| Week 11                         | Noon and Tanween: Understanding the usage and pronunciation of Noon and Tanween in Arabic.                                                                                         |  |  |  |  |
| Week 12                         | Taa Marbuta and Taa Marbuta (Bound and Open Taa): Understanding the rules and usage of the Taa Marbuta and Open Taa in Arabic language.                                            |  |  |  |  |
| Week 13                         | Hamzat Al-Wasl and Al-Qat' (Hamza of Connection and Hamza of Disconnection):<br>Differentiating between Hamzat Al-Wasl and Al-Qat' and their respective roles in<br>pronunciation. |  |  |  |  |
| Week 14                         | Alif Al-Maddooda and Alif Al-Muqassara Writing Rules: Exploring the rules for writing Alif Al-Maddooda (elongated Alif) and Alif Al-Muqassara (shortened Alif).                    |  |  |  |  |
| Week 15                         | Solar and Lunar Letters: Identifying the distinction between solar and lunar letters in Arabic pronunciation.                                                                      |  |  |  |  |

| Week 16 Prepara | tory week before the final exam |
|-----------------|---------------------------------|
|-----------------|---------------------------------|

| Learning and Teaching Resources |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| Learning and teaching resources |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |  |  |  |
|                                 | Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Available in the<br>Library? |  |  |  |
| Required Texts                  | <ol> <li>Sufficient" For Canadian: It is considered from Most<br/>important Books in science Grammar, where Explains.<br/>Rules And the structures Grammar In style simplified And<br/>comprehensive.2</li> <li>Exchange"For son What is with you:book famous It deals<br/>with rules Discharge<br/>Actions And the names in the language Arabic, And it is<br/>considered from works Grammar<br/>Classic.</li> <li>joint in science Arabic"For son reaped:book<br/>comprehensive Covers group<br/>Wide from Topics Grammar And exchange And<br/>eloquence And literature</li> </ol> | Yes                          |  |  |  |
| Recommended Texts               | <ul> <li>1.Millennium"For son What is with you: Book famous in science Grammar And exchange, It is considered from Most important the reviewer Classic in study the language Arabic.</li> <li>2.The Extremist in all art Funny" For son Anbari: Book Includes Many from Words and expressions Arabic used in Literature And the hair.</li> <li>3. Statement And clarification" For son to forbid Ashkelonian: Book It deals with Topics Grammar And exchange And eloquence, It is considered Reference Values in study the language Arabic.</li> </ul>                               | No                           |  |  |  |
| Websites                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |  |  |  |
## Level 2

## Module 12 Subject information

| Module Title                          | Fluid Mechanic  |                       | CS                           | Module Delive                                                                                    | ry    |  |  |
|---------------------------------------|-----------------|-----------------------|------------------------------|--------------------------------------------------------------------------------------------------|-------|--|--|
| Module Type                           | Core            |                       |                              | ⊠Theory                                                                                          |       |  |  |
| Module Code                           | COGTEK 20       |                       | 0                            | □ Lecture<br>⊠ Lab                                                                               |       |  |  |
| ECTS Credits                          | 8               |                       | ⊠ Tutorial                   |                                                                                                  |       |  |  |
| SWL (hr/sem)                          | 200             |                       |                              | □ Practical<br>□ Seminar                                                                         |       |  |  |
| Module Level                          |                 | 2                     | Semester of                  | Delivery                                                                                         | 3     |  |  |
| Administration Department             |                 | RETE                  | College                      | College of Oil and Gas Technique<br>Engineering - Kirkuk, Northern<br>Technical University, Iraq |       |  |  |
| Module Leader                         | Obed Majeed Ali |                       | e-mail                       | obedmajeed@ntu.edu.iq                                                                            |       |  |  |
| Module Leader's Acad. Title           |                 | Assistant<br>lecturer | Module Lead<br>Qualification | der's                                                                                            | M.Sc. |  |  |
| Module Tutor                          |                 |                       | e-mail                       |                                                                                                  |       |  |  |
| Peer Reviewer Name                    |                 |                       | e-mail                       |                                                                                                  |       |  |  |
| Scientific Committee Approval<br>Date |                 |                       | Version<br>Number            |                                                                                                  |       |  |  |

| Relation with other Modules |      |          |  |  |  |  |
|-----------------------------|------|----------|--|--|--|--|
| Prerequisite module         | None | Semester |  |  |  |  |
| Co-requisites module        | None | Semester |  |  |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Module Aims                                            | <ul> <li>This module will give students a thorough introduction to the fundamental principles of fluid mechanics and deal with engineering applications of inviscid and viscous flow.</li> <li>On completion of this module, students should be able to: <ol> <li>Understand the fundamental principles of fluid statics and fluid flow, with consideration of both ideal (inviscid) and real (viscous) flow.</li> <li>Compute basic parameters for hydrostatic fluid problems, including forces on submerged bodies.</li> <li>Analyze ideal fluid flow in one- and two-dimensions using the continuum concepts of conservation of mass, momentum and energy.</li> <li>Knowledge and understanding of viscous flow with application to boundary layers, pipe flow, flow around bodies, lubrication and other application areas.</li> <li>Identify appropriate methodologies for modeling flows using non-dimensional parameters.</li> <li>Describe the operation of turbomachinery for incompressible flow, including the dynamics of centrifugal pumps.</li> <li>Recognise and simply describe the complex nature of turbulent flow.</li> </ol> </li> </ul> |  |  |  |  |
| Module Learning<br>Outcomes                            | <ol> <li>Understand how to convert the unit system from British to SI. unit or vice versa.</li> <li>Training the students how to solve the problems associated with fluid mechanics.</li> <li>Measure the fluid flow of liquids by different types of flow meters. 4. Analyze the magnitude of the horizontal and vertical components of the force of the water on the gate.</li> <li>Determine the reading on the pressure gauge by the different types of manometers.</li> <li>Draw simple hydraulic and energy gradient lines.</li> <li>Solve the formulas of open channel flow.</li> <li>Skills outcomes         <ul> <li>Analysis</li> <li>synthesis</li> <li>interpretation,</li> <li>report writing</li> <li>laboratory</li> <li>computational.</li> </ul> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Indicative Contents                                    | Indicative content includes the following. Part A- Introduction: Basic concepts of<br>fluid mechanics. Fundamental terms. Physical values. Fluids and their properties.<br>Forces inside fluid. Measurement of pressure. Relative statistics of fluid –<br>constant acceleration, rotation. Forces of hydrostatic pressure. Buoyancy.<br>Streamlines. Stream surface. Stream tube. Mass/volume flow. Control volume.<br>Fluid Dynamics: Continuity equation. Basic laws of fluid dynamics – conservation<br>of mass, conservation of linear momentum, conservation of energy. Ideal fluid<br>flow. Application of Bernoulli's equation. Real fluid flow. Viscosity. Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

| of losses. Reynolds experiment. Laminar and turbulent flow. Boundary layer.                  |
|----------------------------------------------------------------------------------------------|
| Velocity profile. Losses in pipes. Frictional losses. Moody's diagram. Local losses.         |
| Pumps, types. Turbines and the working principle of the turbine.                             |
| Part B-● Analyze characteristics of a particular flow. ● Formulate the governing             |
| equations and boundary conditions. <ul> <li>Solve these equations analytically in</li> </ul> |
| simple cases. Revision problem classes and quiz [6 hrs]                                      |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students |  |  |

| Student Workload (SWL)                     |     |                                 |       |  |  |
|--------------------------------------------|-----|---------------------------------|-------|--|--|
| Structured SWL (h/sem)                     | 02  | Structured SWL (h/w)            | 6.2   |  |  |
| Regular student load during the semester   | 33  | Regular weekly student load     | 0.2   |  |  |
| Unstructured SWL (h/sem)                   | 107 | Unstructured SWL (h/w)          | 7 1 2 |  |  |
| Irregular student load during the semester | 107 | Irregular student load per week | 7.15  |  |  |
| Total SWL (h/sem)                          |     |                                 |       |  |  |
| The student's total academic load during   |     | 200                             |       |  |  |
| the semester                               |     |                                 |       |  |  |

| Module Evaluation       |                  |         |                   |                    |                            |  |
|-------------------------|------------------|---------|-------------------|--------------------|----------------------------|--|
| Time/Num                |                  |         | Weight<br>(Marks) | Week<br>Due        | Relevant Learning Outcome  |  |
|                         | Quizzes          | 5       | 10% (10)          | 3,5,7,9,<br>and 11 | LO #4,6,8,10 and #12       |  |
| Formative<br>assessment | Assignments      | 5       | 10% (10)          | 2, 6,9,<br>11,13   | LO #3, #5, #8, #10 and #13 |  |
|                         | Lab Report       | 10      | 20% (20)          | All                | 2,4,6,7,8,9,10,11,12,13    |  |
| Summative               | Mid Term<br>exam | 2 hours | 10% (10)          | 7                  | LO #1-7                    |  |
| assessment              | Final Exam       | 3hr     | 50% (50)          | 16                 | All                        |  |
| 100% (100 Marks)        |                  |         |                   |                    |                            |  |

## Delivery Plan (Weekly Syllabus)

| Week 1  | Introduction - Units system                   |
|---------|-----------------------------------------------|
| Week 2  | Physical properties of fluids.                |
| Week 3  | Physical properties of fluids                 |
| Week 4  | Fluid pressure at static.                     |
| Week 5  | Fluid pressure instruments                    |
| Week 6  | Hydrostatic force on a plane surface.         |
| Weeks 7 | Mid-Term Exam                                 |
| Weeks 8 | Hydrostatic force on an inclined surface      |
| Week 9  | Hydrostatic force on a curved surface.        |
| Week 10 | Fluid dynamics/classifications of fluids.     |
| Week 11 | Conservation of mass                          |
| Week 12 | Conservation of momentum and its application. |
| Week 13 | Conservation of energy-Bernoulli equation.    |
| Week 14 | Viscous flow in pipes.                        |
| Week 15 | Preparing for the final exam                  |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                                                |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
|                                      | Material Covered                                                                               |  |  |  |
| Week 1                               | Lab 1: Density and Specific Gravity                                                            |  |  |  |
| Week 2                               | Lab 2: DETERMINATION OF LIQUID VISCOSITY USING STOCK`S METHOD.                                 |  |  |  |
| Week 3                               | Lab 3: Determination of Center of Pressure and Hydro-static Force on Plane surface (Part One). |  |  |  |
| Week 4                               | Lab 4: Determination of Center of Pressure and Hydro-static Force on Plane surface (Part Two). |  |  |  |
| Week 5                               | Lab 5: Reynolds Number Investigation.                                                          |  |  |  |

| Week 6 | Lab 6: Estimation of the Volume Flow Rate Using Orifice Meter Apparatus. |
|--------|--------------------------------------------------------------------------|
| Week 7 | Lab 7: IMPACT OF WATER JET ON VANES.                                     |

| Learning and Teaching Resources |                                                        |                  |  |  |  |  |
|---------------------------------|--------------------------------------------------------|------------------|--|--|--|--|
|                                 | Text                                                   | Available in the |  |  |  |  |
|                                 | TCAL                                                   | Library?         |  |  |  |  |
| Required Texts                  | FLUID MECHANICS                                        | Yes              |  |  |  |  |
| Recommended Texts               | 1- A TEXTBOOK OF FLUID MECHANICS AND HYDRAULIC         | No               |  |  |  |  |
|                                 | MACHINES BY RAJPUT.                                    |                  |  |  |  |  |
|                                 | 2- Fluid Mechanics by Yunus A. Cengel, John M.Cimbala. |                  |  |  |  |  |
|                                 |                                                        |                  |  |  |  |  |
|                                 |                                                        |                  |  |  |  |  |

| Module 13<br>Subject information   |             |                       |                              |                                                                    |                                                                         |  |
|------------------------------------|-------------|-----------------------|------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Module Title                       | Mathematics |                       | Module Delivery              |                                                                    |                                                                         |  |
| Module Type                        |             | Core                  |                              | ⊠Theory                                                            |                                                                         |  |
| Module Code                        |             | COGTEK 201            |                              | □ Lecture<br>□ Lab                                                 |                                                                         |  |
| ECTS Credits                       | 7           |                       |                              | <ul><li>☑ Tutorial</li><li>□ Practical</li><li>□ Seminar</li></ul> |                                                                         |  |
| SWL (hr/sem)                       | 175         |                       |                              |                                                                    |                                                                         |  |
| Module Level                       |             | 2                     | Semester of                  | of Delivery 3                                                      |                                                                         |  |
| Administration Department          |             | RETE                  | College                      | College of (<br>Engineeri<br>Techni                                | Dil and Gas Techniques<br>ng - Kirkuk, Northern<br>cal University, Iraq |  |
| Module Leader                      |             |                       | e-mail                       |                                                                    |                                                                         |  |
| Module Leader's Acad. Title        |             | Assistant<br>lecturer | Module Lead<br>Qualification | ler's                                                              |                                                                         |  |
| Module Tutor                       |             |                       | e-mail                       |                                                                    |                                                                         |  |
| Peer Reviewer Name                 |             |                       | e-mail                       |                                                                    |                                                                         |  |
| Scientific Committee Approval Date |             |                       | Version<br>Number            |                                                                    |                                                                         |  |

| Relation with other Modules        |      |          |  |  |  |  |  |  |
|------------------------------------|------|----------|--|--|--|--|--|--|
|                                    |      |          |  |  |  |  |  |  |
| Prerequisite module                | None | Semester |  |  |  |  |  |  |
| Co-requisites module None Semester |      |          |  |  |  |  |  |  |

| Module Aims,                | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ul> <li>To equip students with the knowledge and understanding of mathematical concepts, notation and techniques relevant to mechanical engineering.</li> <li>To develop skills and confidence in mathematical modeling and problem solving.</li> <li>To support students in understanding mathematical aspects of other modules.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Module Learning<br>Outcomes | <ul> <li>On successful completion of this module, students should be able to:</li> <li>1. Use vectors to represent three-dimensional space, including points, lines and planes and find intersections among these.</li> <li>2. Differentiate and integrate vectors in the context of dynamics problems and understand scalar and vector products and their use in mechanics and dynamics.</li> <li>3. Integrate and differentiate functions using a range of techniques and relate derivatives and integrals to engineering applications such as rates of change, maxima and minima, areas, volumes, averages, flow rates, work, centers of mass, etc.</li> <li>4. Sketch (freehand) basic and composite functions, recognizing limiting behaviors and discontinuities.</li> <li>5. Create mathematical models of engineering systems described by first order ordinary differential equations, and solve the equations analytically and via Euler's method.</li> <li>6. Differentiate and integrate functions of more than one variable.</li> <li>7. Understand the formation of matrices, their associated algebra, their use in the solution of simultaneous equations and in graphical transformations, and the concepts of eigenvalues and eigenvectors.</li> <li>8. Understand, manipulate and plot complex numbers and functions in various forms, find complex solutions of equations, and appreciate the</li> </ul> |
|                             | 9. Present data effectively using a variety of techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                     | <ul> <li>10. Calculate important statistical measures of central tendency and dispersion.</li> <li>11. Understand the concept of correlation and regression, calculate the regression coefficient and determine regression lines via the least squares technique.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 12. Understand the basic concepts of probability, including conditional probability and independence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | <ul> <li>Skills outcomes</li> <li>Mathematical modeling and problem solving skills</li> <li>Ability to apply mathematics to represent, analyze and design engineering systems.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Indicative Contents | Definitions and use of vectors in 3D space; vector algebra; the scalar and<br>vector products and their uses.<br>Functions and graphs; limits of functions.<br>Techniques for differentiation: product rule; quotient rule; chain rule;<br>implicit differentiation; logarithmic differentiation; differentiating<br>parametric equations; Differentiating vectors in Cartesian and polar<br>coordinate systems.<br>Techniques for integration: substitution; integration by parts; partial<br>fractions; integration of vectors; numerical integration.<br>Engineering applications of integration and differentiation.<br>Functions of more than one variable: partial differentiation; multiple<br>integrals.<br>First order differential equations; Mathematical modeling and problem<br>solving.<br>Vector equations of lines and planes. |
|                     | Matrix algebra; transformation matrices; eigenvalues and eigenvectors.<br>Complex numbers; hyperbolic functions.<br>Statistics, regression and elementary probability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Strategies                       | Implementing active learning in a class room requires preparation and<br>some changes to the lecture. However, the lecture content is not<br>changed or replaced with new material. The same lecture content is<br>delivered to the students in a better way and the lecture time is used<br>more effectively. The following are some of the techniques of active<br>learning and cooperative learning I personally use in my engineering<br>classes to enhance student's understanding and retention of the<br>material: |  |  |  |  |

| 0 | <b>One Minute Paper</b> : Students are asked to write a one-minute      |
|---|-------------------------------------------------------------------------|
|   | note (about the previous lecture, the homework or the material          |
|   | in general) to the instructor on a piece of paper. This provides a      |
|   | fast way for the teacher to have a quick feedback on students'          |
|   | understanding of what was previously covered.                           |
| 0 | Muddiest Point: When there is a long lecture with multiple              |
|   | topics covered, the students are given the opportunity to discuss       |
|   | the material covered in the lecture and list the most difficult         |
|   | parts of the lecture.                                                   |
| 0 | <b>Clarification Pause</b> : During the lecture, the students are given |
|   | the time to go over the material written on the board, think            |
|   | about it and ask if they have any questions. Then, the lecturer         |
|   | answers the different questions raised before resuming the next         |
|   | part of the lecture.                                                    |
| 0 | <b>Questions and answers</b> : Usually during the lecture, questions    |
|   | are raised about the new material presented and questions are           |
|   | solved on the board. A sample of the questions asked include            |
|   | "Why do you think this topic is important?" or "what is the             |
|   | relationship between what we were talking about and this                |
|   | technique?" or "which technique is best?"                               |
| 0 | <b>Critical Thinking, Group Discussion</b> : Students are given a       |
|   | nandout with multiple problems and they are asked to apply              |
|   | They are asked to discuss it together and some up with a single         |
|   | solution that all mombars agree on                                      |
| 0 | Critical Thinking Think-nair-share. Students are asked to               |
| 0 | work individually on a problem for a short time. Then students          |
|   | nair up to compare their answers. Then they have to explain             |
|   | their answer and share it with the rest of the class.                   |
| 0 | <b>Peer Teaching:</b> If one member of the team solves the problem      |
| - | correctly, he will explain it to the rest of the group and discuss      |
|   | with them why his/her answer is correct and their answer is             |
|   | not. This allows the students to find out what went wrong and           |
|   | the mistake they made in solving the problem. This technique            |
|   | will help the student to avoid these mistakes when doing the            |
|   | homework or the exams.                                                  |
|   |                                                                         |
| 0 | Active Review Sessions: For each exam, students are given a             |
|   | practice test with a set of problems a week in advance. They are        |
|   | encouraged to work on the practice test individually first and          |
|   | then in groups to discuss the answers. During the review                |
|   | session, the students are asked questions about the problems in         |
|   | the practice test and they are given the choice to decide which         |
|   | problems they want the professor to focus on.                           |
|   |                                                                         |

| Student Workload (SWL)                       |    |                                 |      |  |  |
|----------------------------------------------|----|---------------------------------|------|--|--|
| Structured SWL (h/sem) Structured SWL (h/w)  |    | 5.2                             |      |  |  |
| Regular student load during the semester     | 70 | Regular weekly student load     | 5.2  |  |  |
| Unstructured SWL (h/sem)                     | 07 | Unstructured SWL (h/w)          | 6 46 |  |  |
| Irregular student load during the semester   | 97 | Irregular student load per week | 0.40 |  |  |
| Total SWL (h/sem)                            |    |                                 |      |  |  |
| The student's total academic load during 150 |    |                                 |      |  |  |
| the semester                                 |    |                                 |      |  |  |

| Module Evaluation       |                  |                   |             |                           |                                |  |
|-------------------------|------------------|-------------------|-------------|---------------------------|--------------------------------|--|
|                         | Time/Number      | Weight<br>(Marks) | Week Due    | Relevant Learning Outcome |                                |  |
|                         | Quizzes          | 5                 | 15%<br>(15) | 5,7, 9,10<br>and 12       | LO #1, #3, #5, #6,and #7       |  |
| Formative<br>assessment | Assignments      | 10                | 20%<br>(20) | Continuous                | LO#3,4,5,6,7,8,9,10,11, and 12 |  |
|                         | Seminar          | 1                 | 5% (5)      | 7                         | LO #6                          |  |
| Summative               | Mid Term<br>exam | 2 hours           | 10%<br>(10) | 8                         | LO #1-4                        |  |
| assessment              | Final Exam       | 3hr               | 50%<br>(50) | 16                        | All                            |  |
| 100% (100 Marks)        |                  |                   |             |                           |                                |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                                              |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Week 1                          | Review in differentiation and integration                                                                                                                                    |  |  |  |
| Week 2                          | Vectors: general introduction to vectors in space – equation of straight line and an equation for a plane in space – plane, tangent and perpendicular line – vector function |  |  |  |
| Week 3                          | Complex numbers – polar form – Euler equation – exponential and roots of complex numbers – composite functions                                                               |  |  |  |
| Week 4                          | Tow and more variable equations – partial derivative                                                                                                                         |  |  |  |
| Week 5                          | Chain rule for partial derivative – gradient and directional derivative – maximum and minimum values for tow variable functions                                              |  |  |  |
| Week 6                          | Double integral, areas and volumes – physical applications                                                                                                                   |  |  |  |
| Weeks 7                         | Triple integral                                                                                                                                                              |  |  |  |
| Weeks 8                         | Mid-Term Exam                                                                                                                                                                |  |  |  |
| Week 9                          | Polar coordinates – cylindrical and spherical coordinates – curve drawing in polar coordinates                                                                               |  |  |  |

| Week 10 | Green's theorem - divergence theorem                                                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 11 | The linear integration                                                                                                                         |
| Week 12 | The Series: sequences of numbers - limits - infinite series - limit by definition - alternating series test - power series - converges interva |
| Week 13 | Taylor/Maclaurin series for a function – general applications                                                                                  |
| Week 14 | Matrices: introduction and Basic Operations                                                                                                    |
| Week 15 | Preparing for the final exam                                                                                                                   |

| Learning and Teaching Resources |                                                                                                                  |                           |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
|                                 | Text                                                                                                             | Available in the Library? |  |  |  |  |
| Required Texts                  | "Calculus", Ford, S.R. and Ford, J.R., (1963) Mc Graw Hill                                                       | Yes                       |  |  |  |  |
| Recommended Texts               | "Advanced Engineering Mathematics", Erwin Kreyszig et<br>al., (2006)<br>George B. Thomas, Jr., "Thomas' Calculus | No                        |  |  |  |  |

| Module 14<br>Subject information          |           |                              |                                                  |                          |                    |  |  |
|-------------------------------------------|-----------|------------------------------|--------------------------------------------------|--------------------------|--------------------|--|--|
| Module Title                              |           | Electronics                  |                                                  |                          | Module Delivery    |  |  |
| Module Type                               |           | CORE                         |                                                  |                          | ⊠Theory<br>—       |  |  |
| Module Code                               |           | <b>RETE 200</b>              |                                                  |                          | □Lecture<br>⊠Lab   |  |  |
| ECTS Credits                              |           |                              |                                                  | ⊠ Tutorial               |                    |  |  |
| SWL (hr/sem)                              |           |                              |                                                  | - □Practical<br>□Seminar |                    |  |  |
| Module Level                              |           | 2                            | Semester of Delivery 3                           |                          | 3                  |  |  |
| Administering Do                          | epartment | Electronics and Control Eng. | <b>College</b> Technical Engineering College - I |                          | g College - Kirkuk |  |  |
| Module Leader                             |           |                              | e-mail                                           |                          |                    |  |  |
| Module Leader's Acad. Title Asst. lecture |           | Asst. lecture                | Module Leader's Qualification M.Sc.              |                          | M.Sc.              |  |  |
| Module Tutor                              | None      |                              | e-mail                                           | None                     | lone               |  |  |
| Peer Reviewer Name Asst. Lect.            |           | Asst. Lect.                  | e-mail                                           | @ntu.ed                  | @ntu.edu.iq        |  |  |
| Review Committee Approval06/01/2023       |           |                              | Version N                                        | umber                    | <b>nber</b> 1.0    |  |  |

| Relation with Other Modules                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |          |  |  |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------|--|--|--|--|--|
| Relationship with other subjects                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |          |  |  |  |  |  |
| Prerequisitemodule                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | Semester |  |  |  |  |  |
| Co-requisites module                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | Semester |  |  |  |  |  |
| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |          |  |  |  |  |  |
| Cours                                                  | Course objectives, learning outcomes and guiding content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |          |  |  |  |  |  |
| Module Aims                                            | <ol> <li>Providing a clear explanation about the operation of basic semiconductor devices available today.</li> <li>To show how each device and its characteristics is used in an appropriate circuit</li> <li>Understanding the fundamentals of circuit analysis and analogue electronics and it is a basic introduction to electronic theory for a group of electronics-based programmers.</li> <li>Understanding the basic concepts that are used and built upon in future years.</li> <li>Recognize the fundamentals of basic electrical components and circuits and analyzes simple electrical circuits.</li> <li>Explain basic input and output electronics for the electrical circuits.</li> <li>Introduces resources to support learning and their use to develop a resilient approach to learning.</li> <li>Introducing students to the language and methodologies that engineers use to solve problems.</li> <li>Teaching the ability to analyze any DC circuit, and simple electronic circuits containing diodes and transistors</li> </ol>                                      |  |          |  |  |  |  |  |
| Module Learning<br>Outcomes                            | <ul> <li>16. Students will be able to understand the operation of simple power supply circuits and specify components for a given performance and be able to discuss and explain them.</li> <li>17. Students will be able to understand the electrical characteristics of diodes and analyzes simple analogue circuits containing these elements and be able to discuss and explain them.</li> <li>18. Students will be able to analyze the diode characteristics and equations, ideal vs real. Signal conditioning, clamping and clipping, Zener diodes and power supplies.</li> <li>19. Students will be able to demonstrate broad knowledge of electronic components: their construction, function and application in an electronic circuit, and have the ability to build a working electronic circuit using these components, from a given design.</li> <li>20. Students will be able to demonstrate the ability to design, build and test a printed circuit board based on knowledge of component function and competent use of CAD software and established design rules.</li> </ul> |  |          |  |  |  |  |  |

|                     | the outcomes of an experiment using a laboratory logbook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicative Contents | Indicative content includes the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Learning and Teaching Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Strategies          | <ol> <li>The learning and teaching strategy is designed to achieve the following aims:         <ol> <li>communicate knowledge and information on basic electronic circuits</li> <li>Engage students in the analysis and understanding of basic electronic circuits through a combination of theory lectures, tutorials and problem sheets.</li> <li>communicate knowledge on ethical behavior in work environment through lectures.</li> </ol> </li> <li>communicate information on opportunities in electronic engineering paths through lectures.</li> </ol> |

| Student Workload (SWL)                                                        |    |                                                           |      |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|------|
| Structured SWL(h/same)<br>Regular student load during the<br>semester         | 93 | Structured SWL (h/w)<br>Regular weekly student load       | 6.2  |
| Unstructured SWL(h/same)<br>Irregular student load during the<br>semester     | 82 | Unstructured SWL (h/w)<br>Irregular student load per week | 5.46 |
| Total SWL(h/same)<br>The student's total academic load<br>during the semester |    | 175                                                       |      |

| Module Evaluation       |              |                  |                |              |                         |
|-------------------------|--------------|------------------|----------------|--------------|-------------------------|
|                         |              | Time/Nu          | Weight (Marks) | Week Due     | Relevant Learning       |
|                         |              | mber             | <b>3 ( 1 )</b> |              | Outcome                 |
|                         | Quizzes      | 5                | 10% (10)       | 4,8,9,11,13  | LO#3,6,8, 10 and 11     |
| Formative<br>assessment | Assignments  | 5                | 10% (10)       | 2, 4,6,10,12 | LO # 3, 7, 9,12 and 14  |
|                         | Report /Lab. | 10               | 10% (10)       | Continuous   | 2,4,6,7,8,9,10,11,12,13 |
|                         | Projects     | 1                | 10% (10)       | 13           | LO # 5, 8 and 10        |
| Summative               | Midterm Exam | 2hr              | 10% (10)       | 7            | LO #1-7                 |
| assessment              | Final Exam   | 3hr              | 50% (50)       | 16           | All                     |
| Total assessment        |              | 100% (100 Marks) |                |              |                         |

| Delivery Plan (Weekly Syllabus) |                                                                                |  |
|---------------------------------|--------------------------------------------------------------------------------|--|
|                                 | Material Covered                                                               |  |
| Week 1                          | Introduction to Atom, Material Used in Electronics, Current in Semiconductors. |  |
| Week 2                          | N-Type and P-Type Semiconductors, The PN Junction.                             |  |
| Week 3                          | Diode Operation, Voltage-Current (VI) Characteristics.                         |  |
| Week 4                          | Diode Models, Half-Wave Rectifiers.                                            |  |
| Week 5                          | Full-Wave Rectifiers, Power Supply Filters and Regulators.                     |  |
| Week 6                          | Diode Limiters and Clampers, Voltage Multipliers.                              |  |
| Week 7                          | The Zener Diode, Zener Diode Applications.                                     |  |
| Week 8                          | Mid-term Exam                                                                  |  |
| Week 9                          | Bipolar Junction Transistor (BJT) Structure.                                   |  |
| Week 10                         | Basic BJT Operation                                                            |  |
| Week 11                         | BJT Characteristics and Parameters                                             |  |

| Week 12 | Transistor Bias Circuits and the DC Operating Point |
|---------|-----------------------------------------------------|
| Week 13 | Voltage-Divider Bias                                |
| Week 14 | Other Bias Methods                                  |
| Week 15 | Preparatory Week                                    |
| Week 16 | Final Exam                                          |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                                                                                                                                                                                                                                                                                          |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                      | Material Covered                                                                                                                                                                                                                                                                                                                         |  |  |
| Week 1-2                             | <ul> <li>Lab 1:The Diode Characteristic</li> <li>Part 1: Characteristic of PN Junction Diode Curve (Forward Bise)</li> <li>Part 2: Characteristic of PN Junction Diode Curve (Revers Bise)</li> </ul>                                                                                                                                    |  |  |
| Week 3-5                             | <ul> <li>Lab 2:Diode Applications</li> <li>Part 1: Diode Rectifiers</li> <li>Half-wave rectifier.</li> <li>Center-tapped full-wave rectifier.</li> <li>Full-wave rectifier circuit.</li> <li>Part 2: Diode Rectifiers with Filter.</li> <li>Half-wave rectifier with Filter</li> <li>Full-wave rectifier circuit with Filter.</li> </ul> |  |  |
| Week 6                               | Lab 3:Diode Clipping Circuits                                                                                                                                                                                                                                                                                                            |  |  |
| Week 7                               | Lab 4:Diode Clamping Circuits                                                                                                                                                                                                                                                                                                            |  |  |
| Week 8                               | Lab 5: Voltage Doubler Circuit.                                                                                                                                                                                                                                                                                                          |  |  |
| Week 9-12                            | <ul> <li>Lab 6:Special-Purpose Diodes</li> <li>Part 1: Static Characteristic of Zener Diode.</li> <li>Part 2: The Zener Diode and Regulator</li> <li>Out-Put Voltage Regulation by Zener Diode using Varying.V<sub>in</sub></li> <li>Out-Put Voltage Regulation by Zener Diode using Varying.R<sub>L</sub></li> </ul>                    |  |  |

|            | Lab 7:Transistor Static Characteristic                                                              |
|------------|-----------------------------------------------------------------------------------------------------|
| Week 13-14 | <ul> <li>Common-Base Transistor Connection</li> <li>Common-Emitter Transistor Connection</li> </ul> |

| Learning and Teaching Resources |                                                                                              |                              |
|---------------------------------|----------------------------------------------------------------------------------------------|------------------------------|
|                                 | Text                                                                                         | Available in the<br>Library? |
| Required Texts                  | Electronic Devices' Conventional Current Version, by Thomas L. Floyd, Tenth Edition.         | Yes                          |
| Recommended Texts               | Electronic Devices and Circuit Theory' by Robert<br>Boylestad Louis Nashelsk, Ninth Edition. | No                           |
| Websites                        |                                                                                              |                              |

| Module 15<br>Subject information   |            |                 |                              |                                                                    |     |
|------------------------------------|------------|-----------------|------------------------------|--------------------------------------------------------------------|-----|
| Module Title                       | ٦          | Mechanical Draw | ing                          | Module Delive                                                      | ery |
| Module Type                        |            | Core            |                              | ⊠Theory                                                            |     |
| Module Code                        |            | <b>RETE 201</b> |                              | □ Lecture<br>⊠ Lab                                                 |     |
| ECTS Credits                       | 6          |                 |                              | Tutorial                                                           |     |
| SWL (hr/sem)                       |            | 150             |                              |                                                                    |     |
| Module Level                       |            | 2               | Semester of                  | Delivery 3                                                         |     |
| Administration Departm             | ent        | RETE            | College                      | College of Oil and Gas Techniques<br>Engineering – Kirkuk (COGTEK) |     |
| Module Leader                      |            |                 | e-mail                       |                                                                    |     |
| Module Leader's Acad. Title        |            |                 | Module Lead<br>Qualification | er's                                                               |     |
| Module Tutor                       | dule Tutor |                 | e-mail                       |                                                                    |     |
| Peer Reviewer Name                 |            |                 | e-mail                       |                                                                    |     |
| Scientific Committee Approval Date |            |                 | Version<br>Number            |                                                                    |     |

| Relation with other Modules |                     |          |   |
|-----------------------------|---------------------|----------|---|
| Prerequisite module         | Engineering Drawing | Semester | 2 |
| Co-requisites module        | None                | Semester |   |

| Module Aims,                | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ol> <li>to train students: to read the technical drawings through the application of<br/>techniques</li> <li>Learn students to read symbols, technical terms, standard specifications.</li> <li>To understand the basic principle for descriptive geometry.</li> <li>This course deals with the basic concept of the computer in mechanical drawing.</li> <li>To be able to communicate with manufacturers of mechanical systems.</li> <li>To understand standard specifications, draw simple and complex assembly<br/>drawings.</li> <li>To be able to communicate with other mechanical engineering professionals<br/>Regardless of their spoken language.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Module Learning<br>Outcomes | <ul> <li>Important: Write at least 6 Learning Outcomes, better to be equal to the number of study weeks.</li> <li>1. Capability to use AutoCAD for 2-D representations.</li> <li>2. To make the students understand all about the screw threads and their Definitions also to teach the students all common types for screw threads and the common types for bolts and nuts with an overview in details.</li> <li>3. To make the students understand all about the Keys, types of keys, spline shaft and hub concept, and the basic definitions for Keys also the correct manner for Keys drawing.</li> <li>4. Enables the students to learn the techniques and standard practices of technical graphics.</li> <li>5. To make the students understand all about the riveting and types of rivets.</li> <li>6. Read a working or assembly drawing (blueprint)</li> <li>7. Represent mechanical components in multi view orthographic representation</li> <li>8. Understanding all about the welding, types of weld joints and the basic Definitions for welding also the correct manner for all types of welding symbol drawing</li> <li>9. To help students understand all about the Gears classification, draw spur gear, definitions, formulas and calculations.</li> </ul> |

|                     | Indicative content includes the following.                                           |
|---------------------|--------------------------------------------------------------------------------------|
|                     | Part A - Introduction to (CAD), components of computer aided drawing (CAD),          |
|                     | Exercises. [4 hrs]                                                                   |
|                     | Screw threads, forms of screw thread, international metric threads (ISO screw),      |
|                     | Common types of fasteners. [8hrs]                                                    |
|                     | Method of drawing (Hexagonal & Square headed bolts and nuts) Screw threads,          |
|                     | Nuts, Forms and types of screw threads and types of nuts, ISO. Also method of        |
|                     | drawing (Hexagonal & Square headed bolts and nuts), with an exercise for these       |
|                     | objects. [8 hrs]                                                                     |
|                     | general introduction for Keys, types of keys, spline shaft and hub Drawing, and      |
|                     | the basic definitions for Keys also the correct manner for Keys drawing. The         |
|                     | common types for Keys also an explanation in detail. Also the pin and cotter joint   |
|                     | [12hrs]                                                                              |
| Indicative Contents |                                                                                      |
|                     | Revision and guiz [8hrs]                                                             |
|                     | Part B –                                                                             |
|                     | Fundamentals of rivets and riveted joints, types of riveted joints. Conventional     |
|                     | rivet symbol, and the basic definitions for riveting also the correct manner for all |
|                     | types of rivets drawing, also an explanation in details for all types. [10 hrs]      |
|                     | general introduction for Welding, type of welding, welding symbols standard. [4      |
|                     | hrs]                                                                                 |
|                     | General introduction for Pulleys, types of pulleys, location and dimension of        |
|                     | Pulleys, and the basic definitions for Pulleys also the correct manner for all types |
|                     | of Pulleys drawing, also an explanation in details for all types. [10 hrs]           |
|                     | Gears classification of gears. Assembly and details of common mechanical unit        |
|                     | [15 hrs]                                                                             |
|                     | Pipes and pipe joints, piping fittings, pipe symbols standard, [10 hrs]              |
|                     |                                                                                      |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | The student work will be assessed according to the module tasks. The excises in<br>the drawing hall will be marked weekly. And the homework will be assessed next<br>lecture. During both assessments the student will give the oral and written<br>feedback in order to improve their skills. The final exam will be done at the end<br>of the semester. Note: the late work will not be marked. |  |  |  |

| Student Workload (SWL)                       |         |                                 |     |  |
|----------------------------------------------|---------|---------------------------------|-----|--|
| Structured SWL (h/sem)                       | 63      | Structured SWL (h/w)            | 12  |  |
| Regular student load during the semester     | 05      | Regular weekly student load     | 4.2 |  |
| Unstructured SWL (h/sem)                     | 70      | Unstructured SWL (h/w)          | ΕQ  |  |
| Irregular student load during the semester   | 07      | Irregular student load per week | 5.0 |  |
| Total SWL (h/sem)                            |         |                                 |     |  |
| The student's total academic load during the | the 150 |                                 |     |  |
| semester                                     |         |                                 |     |  |

| Module Evaluation |                  |                   |             |                           |                              |  |
|-------------------|------------------|-------------------|-------------|---------------------------|------------------------------|--|
|                   | Time/Number      | Weight<br>(Marks) | Week Due    | Relevant Learning Outcome |                              |  |
|                   | Quizzes          | 5                 | 10%<br>(10) | 3,6,8,10,11<br>and12      | LO #4, #7, #9, #11 and #13   |  |
| Formative         | Assignments      | 5                 | 10%<br>(10) | 2, 5,9, 11<br>and 14      | LO #3, #5, #7 #8 and #9      |  |
| assessment        | Lab Report       | 10                | 20%<br>(20) | Continuous                | LO #2,3,4,5,6,7,8,9,10,11,12 |  |
| Summative         | Mid Term<br>exam | 2 hours           | 10%<br>(10) | 7                         | LO #1-7                      |  |
| assessment        | Final Exam       | 3hr               | 50%<br>(50) | 16                        | All                          |  |
| 100% (100 Marks)  |                  |                   |             |                           |                              |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                           |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Week 1                          | Introduction to (CAD), components of computer aided drawing (CAD), Exercises                              |  |  |  |
| Week 2                          | Screw threads, forms of screw thread, international metric threads (ISO screw), Common types of fasteners |  |  |  |
| Week 3                          | Method of drawing (Hexagonal & Square headed bolts and nuts)                                              |  |  |  |
| Week 4                          | Keys, types of keys.                                                                                      |  |  |  |
| Week 5                          | Pins and Cotters.                                                                                         |  |  |  |
| Week 6                          | Rivets and riveted joints                                                                                 |  |  |  |
| Weeks 7                         | Mid-Term Exam                                                                                             |  |  |  |
| Weeks 8                         | Types of riveted joints, conventional rivet symbol, working drawing.                                      |  |  |  |
| Week 9                          | Welding, type of weld joints, welding symbols standard, location and dimension of weld.                   |  |  |  |
| Week 10                         | Pulleys, types of pulleys.                                                                                |  |  |  |
| Week 11                         | Gears classification of gears, spur gear, definitions, formulas and calculations.                         |  |  |  |
| Week 12                         | Assembly and details of common mechanical units. Screw Jack (assembly and details).                       |  |  |  |
| Week 13                         | Power screw (Assemble and details)                                                                        |  |  |  |
| Week 14                         | Coupling, Types of coupling, Bearings, types of bearings.                                                 |  |  |  |
| Week 15                         | Preparatory week before the final exam                                                                    |  |  |  |

| Learning and Teaching Resources |                                                                       |                           |  |  |  |
|---------------------------------|-----------------------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                                  | Available in the Library? |  |  |  |
| Required Texts                  | kl Narayana p. kannaiah k. venketa reddy mechanical<br>engineering.   | Yes                       |  |  |  |
| Recommended Texts               | Up. and. Running.with.AutoCAD.2012.2D.and.3D. Drawing. a nd. Modeling | No                        |  |  |  |

| Module 16<br>Subject information |               |            |                                                                                              |              |                                       |   |
|----------------------------------|---------------|------------|----------------------------------------------------------------------------------------------|--------------|---------------------------------------|---|
| Module Title                     | BAATH CRIMES  |            |                                                                                              | Mo           | dule Deliver                          | у |
| Module Type                      |               |            |                                                                                              | Theory       |                                       |   |
| Module Code                      |               | NTU 200    |                                                                                              |              | _ab                                   |   |
| ECTS Credits                     |               | 2          |                                                                                              |              | ∃Tutorial<br>∃Practical               |   |
| SWL (hr/sem)                     |               | 50         |                                                                                              |              | □Seminar                              |   |
| Module Level                     |               | 2          | Semester of Delivery 3                                                                       |              | 3                                     |   |
| Administering Department         |               | RETE       | CollegeCollege of Oil and Gas TechniquesEngineering - Kirkuk, Northern T<br>University, Iraq |              | s Techniques<br>x, Northern Technical |   |
| Module Leader                    | Dr. Osama Ali | Ibrahim    | e-mail                                                                                       | <u>Osama</u> | <u>@ntu.edu.iq</u>                    |   |
| Module Leader's Acad. Title      |               | Lecturer   | Module Leader's<br>Qualification                                                             |              | Ph.D.                                 |   |
| Module Tutor                     | Tutor None    |            | e-mail                                                                                       |              |                                       |   |
| Peer Reviewer N                  | lame          |            | e-mail                                                                                       |              |                                       |   |
| Review Committee Approval        |               | 06/01/2023 | Version N                                                                                    | umber        | 1.0                                   |   |

| Relation With Other Modules           |                                                        |          |  |  |  |  |
|---------------------------------------|--------------------------------------------------------|----------|--|--|--|--|
| Prerequisitemodule                    | None                                                   | Semester |  |  |  |  |
| Co-requisites<br>module None Semester |                                                        |          |  |  |  |  |
| Modu                                  | Module Aims, Learning Outcomes and Indicative Contents |          |  |  |  |  |

|                 | The objectives of this course include:                                                          |
|-----------------|-------------------------------------------------------------------------------------------------|
|                 | 1 Understanding History                                                                         |
|                 | 1. Onucl Standing history:<br>Studying the crimes of the defunct Baath Party regime may be part |
|                 | of understanding the events of the modern history of the region and                             |
|                 | the countries affected by it.                                                                   |
|                 | 2. Event analysis:                                                                              |
|                 | Examining events and developments that occurred during the                                      |
|                 | Baath Party rule, with a focus on events that constitute human                                  |
| Module Aims     | rights violations and crimes.                                                                   |
|                 | 3. Justice and Human Rights:                                                                    |
|                 | Understand the concepts of human rights and justice, and how                                    |
|                 | justice can be achieved in light of the crimes committed by the Baath                           |
|                 | Party regime.                                                                                   |
|                 | 4. Legal Studies:                                                                               |
|                 | Focus on the legal aspects of these crimes, and how to address them                             |
|                 | E Provention and education.                                                                     |
|                 | 5. Field ways to avoid the recurrence of such crimes in the future and                          |
|                 | raise awareness of the importance of human rights.                                              |
|                 | 1. Understanding history and context:                                                           |
|                 | Students' ability to understand and analyze the historical context of                           |
|                 | Ba'ath Party rule and how crimes occurred during this period.                                   |
|                 | 2. Critical analysis:                                                                           |
|                 | The ability to critically analyze events and situations, and evaluate their                     |
|                 | impact on society and human rights.                                                             |
|                 | 3. Legal knowledge:                                                                             |
|                 | Understand the laws and regulations relating to crimes associated with                          |
|                 | the Baath Party regime, and now they are applied to achieve justice.                            |
| Module Learning | 4. Chuca uninking:<br>Developing critical thinking skills and deep analysis of events and       |
| Outcomes        | nhenomena related to the subject                                                                |
|                 | 5. Human rights awareness:                                                                      |
|                 | Raising awareness about human rights and emphasizing their                                      |
|                 | importance in preventing the recurrence of such crimes in the future.                           |
|                 | 6. Dealing with information sources:                                                            |
|                 | Develop research and analysis skills in using reliable sources to                               |
|                 | understand history and evaluate events.                                                         |
|                 | 7. Writing and Communication:                                                                   |
|                 | Improving writing and expression skills on topics related to the crimes                         |
|                 | of the defunct Baath Party regime.                                                              |
|                 | <b>o.</b> Adding to interact with sensitive content:                                            |
|                 | professionally                                                                                  |
|                 | professionally.                                                                                 |

|                     | This is amazing outcomes can contribute to qualifying students to have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | knowledge in different contexts, whether in the academic field or in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | society in general.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | 1. Crimes of the Baath regime according to the Iraqi Supreme Criminal Court Law of 2005:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | This chapter deals with the concept of crimes and their types, the definition<br>of crime in language and terminology, and also a detailed study of the types<br>of existing crimes. After that, the crimes of the Baath regime are addressed<br>according to the documentation of the Iraqi Supreme Criminal Court Law<br>of 2005 AD. Finally, the types of international crimes and the decisions<br>issued by the Supreme Criminal Court against the perpetrators of crimes are<br>identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | 2. Psychological and social crimes and their effects, and the most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Indicative Contents | <ul> <li>prominent violations of the Baathist regime in Iraq:<br/>This is related to studying the impact of psychological and social crimes committed by the Baath Party regime on the individual and society. It deals with the psychological effects of violations and dealing with them from a social perspective. Also, social crimes and the militarization of society. This chapter discusses the Baath regime's position on religion. It explains in detail the violations of Iraqi laws and the pictures and places of detention of the Baath regime.</li> <li>3. Environmental crimes of the Baath regime in Iraq:<br/>This content includes a study of the environmental impact of the crimes of the Baath Party regime, such as environmental pollution and environmental destruction resulting from the regime's actions, such as war pollution, radioactive contamination, and mine explosions. In addition to the destruction of cities and villages, the drying up of marshes, and the bulldozing of palm groves, trees, and crops.</li> <li>4. Mass grave crimes:</li> </ul> |
|                     | This section deals with the legal and ethical aspects related to mass grave crimes, the events of the genocide graves committed by the Baathist regime in Iraq, and the chronological classification of the genocide graves in Iraq for the period 1963-2003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | This content indicates the diversity and comprehensiveness of the subject,<br>as the legal, social and environmental aspects of the crimes of the Baath<br>Party regime are addressed. This study material also includes the research<br>and analysis of specific case studies for a deep understanding of the context<br>and impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Learning and Teaching Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Active learning and active participation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Strategies          | • Encourage students to actively participate in lessons through questions and group discussions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | Organize educational activities that encourage thinking, discussion and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| problem solving                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning through technology:                                                                                                                                                                                |
| • Use e-learning platforms and educational applications to deliver content and enhance engagement and practice                                                                                              |
| • Providing online resources and multimedia teaching materials to guide students in self-directed learning                                                                                                  |
| Continuous assessment and feedback:                                                                                                                                                                         |
| • Provide periodic assessment of student performance through tests and assignments                                                                                                                          |
| • Providing immediate feedback and supervision to help students improve<br>their skills and learn about the country's history and the suffering of the<br>Iraqi people during the rule of the former regime |
|                                                                                                                                                                                                             |

| Student Workload (SWL)                                                        |    |                                                           |      |  |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|------|--|
| Structured SWL(h/same)<br>Regular student load during the<br>semester         | 33 | Structured SWL (h/w)<br>Regular weekly student load       | 2.2  |  |
| Unstructured SWL(h/same)<br>Irregular student load during the<br>semester     | 17 | Unstructured SWL (h/w)<br>Irregular student load per week | 1.13 |  |
| Total SWL(h/same)<br>The student's total academic load<br>during the semester | 50 |                                                           |      |  |

| Module Evaluation       |              |                 |                  |            |                              |  |  |
|-------------------------|--------------|-----------------|------------------|------------|------------------------------|--|--|
|                         |              | Time/Nu<br>mber | Weight (Marks)   | Week Due   | Relevant Learning<br>Outcome |  |  |
|                         | Quizzes      | 5               | 20% (20)         | 2,4,6,8,10 | LO #3, 6, 7,9, and 11        |  |  |
| Formative<br>assessment | Assignments  | 5               | 10% (10)         | 3,5,7,9,12 | LO #2, 8, 10,12, and 13      |  |  |
| ussessment              | Report       | 2               | 10% (10)         | 6,10       | LO # 4, 9                    |  |  |
| Summative               | Midterm Exam | 1 hour          | 10% (10)         | 7          | LO #1-6                      |  |  |
| assessment              | Final Exam   | 3hr             | 50% (50)         | 16         | All                          |  |  |
| Total assessm           | nent         |                 | 100% (100 Marks) |            |                              |  |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                                                                                                                     |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | Material Covered                                                                                                                                                                                                                                    |  |  |  |
| Week 1-2                        | <ul> <li>Crimes system Resurrection according to law The court Criminal Iraqi<br/>The High general 2005 M</li> <li>The concept of crimes and their types</li> <li>Crimes of the Baath regime according to the documentation of the Iraqi</li> </ul> |  |  |  |

|                 | Supreme Criminal Court Law of 2005 AD                                                                                                                                                                                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 3-4        | <ul> <li>Crimes Psychology and social And its effects, And most prominently<br/>Violations order Baathist in Iraq</li> <li>Psychological crimes</li> <li>Mechanisms of psychological crimes</li> <li>Social crimes</li> </ul>                                                                         |
| <b>Week</b> 5-6 | <ul> <li>Crimes Psychology and social And its effects, And most prominently Violations order Baathist in Iraq <ul> <li>The Baath regime's position on religion</li> <li>Violations of Iraqi laws</li> <li>Human rights violations</li> <li>Some political violations decisions</li> </ul> </li> </ul> |
| Week 7          | Mid-term exam                                                                                                                                                                                                                                                                                         |
| Week 8-9        | <ul> <li>Environmental crimes of the Baath regime in Iraq</li> <li>War pollution, radioactivity and mine explosions</li> <li>Destruction of cities and villages (scorched earth policy)</li> </ul>                                                                                                    |
| Week 10-<br>12  | <ul> <li>Environmental crimes of the Baath regime in Iraq</li> <li>Drying the marshes</li> <li>Destruction of palm groves, trees and crops</li> </ul>                                                                                                                                                 |
| Week 13-<br>14  | <ul> <li>Mass grave crimes</li> <li>Events of the genocidal graves committed by the Baathist regime in Iraq</li> <li>Chronological classification of genocide graves in Iraq for the period 1963 AD-2003 AD</li> </ul>                                                                                |
| Week 15         | Preparatory Week                                                                                                                                                                                                                                                                                      |
| Week 16         | Final Exam                                                                                                                                                                                                                                                                                            |

| Learning and Teaching Resources |                                                                                                                                                                                                     |                              |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
|                                 | Text                                                                                                                                                                                                | Available in the<br>Library? |  |  |
| Required Texts                  | <ul> <li>The Holy Quran</li> <li>Ihsan Hindi, Laws of belligerent occupation,<br/>Rights of the civilian population in the occupied<br/>territories and their protection, Administration</li> </ul> | No                           |  |  |

\_\_\_\_\_

-

|                      | <ul> <li>Politics, Damascus, 1972</li> <li>Archive of the Political Prisoners Foundation.</li> <li>Martyrs Foundation Archive</li> <li>Archive of the Iraqi Center for Documenting<br/>Extremist Crimes at the Holy Abbasid Shrine.</li> </ul> |    |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Recommended<br>Texts | <ul> <li>Ayman Abdel Aziz Salama, International<br/>Responsibility for the Crime of Genocide, 1st ed.,<br/>Dar Al-Ulum for Publishing and Distribution, Cairo,<br/>2006.</li> </ul>                                                            | No |
| Websites             |                                                                                                                                                                                                                                                |    |

| Module 17<br>Subject information           |   |                    |                                                                        |          |                                             |        |
|--------------------------------------------|---|--------------------|------------------------------------------------------------------------|----------|---------------------------------------------|--------|
| Module Title                               | E | English Language   | e                                                                      | Modu     | ıle Delivery                                |        |
| Module Type                                |   | Basic              |                                                                        |          | ⊠Theory                                     |        |
| Module Code                                |   | NTU 201            |                                                                        |          | □Lecture                                    |        |
| ECTS Credits                               |   | 2                  |                                                                        |          | □Lab                                        |        |
|                                            |   |                    |                                                                        |          | □Tutorial                                   |        |
| SWL (hr/sem)                               |   | 50                 |                                                                        |          | □Practical                                  |        |
|                                            |   |                    |                                                                        |          | ⊠Seminar                                    |        |
| Module Level                               |   | 2                  | Semester of Delivery 3                                                 |          | 3                                           |        |
| Administering Department                   |   | RETE               | CollegeCollege of Oil and Gas Techniqu<br>Engineering – Kirkuk (COGTE) |          | as Techniques<br>lk ( <mark>COGTEK</mark> ) |        |
| Module Leader                              |   |                    | e-mail                                                                 |          |                                             |        |
| Module Leader's Acad. Title Assistant lect |   | Assistant lecturer | Module Le                                                              | ader's Q | ualification                                | Master |
| Module Tutor                               |   | e-mail             |                                                                        |          |                                             |        |
| Peer Reviewer Name Name                    |   | e-mail             | Email                                                                  |          |                                             |        |
| Scientific Committee Approval<br>Date      |   | 06/01/2023         | Version Nu                                                             | mber     | 1.0                                         |        |

| Relation with other Modules |                  |          |   |  |  |
|-----------------------------|------------------|----------|---|--|--|
| Prerequisite module         | English Language | Semester | 1 |  |  |

| Co-requisites module | None | Semester |  |
|----------------------|------|----------|--|
|                      |      |          |  |

| Module                      | Module Aims, Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                       |  |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Module Aims                 | The aim of this English Language Lecture is to provide students with a comprehensive<br>understanding of the English language, including its structure, usage, and various<br>linguistic aspects. The lecture aims to enhance students' language skills and improve<br>their overall proficiency in English. |  |  |  |  |  |
|                             | <ol> <li>Demonstrate a solid understanding of the fundamental aspects of English<br/>grammar, vocabulary, and syntax.</li> <li>Apply effective reading strategies to comprehend and analyze a variety of<br/>written texts.</li> </ol>                                                                       |  |  |  |  |  |
| Module Learning<br>Outcomes | <ul> <li>3. Produce coherent and well-structured written pieces using appropriate grammar, vocabulary, and style.</li> <li>4. Listen actively and understand spoken English in various contexts, including</li> </ul>                                                                                        |  |  |  |  |  |
|                             | formal and informal situations.                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                             | 5. Engage in meaningful conversations and deliver clear and organized oral presentations in English.                                                                                                                                                                                                         |  |  |  |  |  |
|                             | 6. Critically evaluate and analyze linguistic elements in literature, media, and other forms of communication.                                                                                                                                                                                               |  |  |  |  |  |
|                             | 7. Recognize and appreciate the historical and cultural contexts that have shaped the English language.                                                                                                                                                                                                      |  |  |  |  |  |
|                             | Indicative content includes the following.                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                             | 1. Introduction to the English language and its global significance.                                                                                                                                                                                                                                         |  |  |  |  |  |
| Indicative Contents         | 2. Overview of English grammar, including parts of speech, sentence structure, and verb tenses.                                                                                                                                                                                                              |  |  |  |  |  |
|                             | 3. Building vocabulary and word choice for effective communication.                                                                                                                                                                                                                                          |  |  |  |  |  |
|                             | 4. Reading comprehension strategies and analysis of different types of texts.                                                                                                                                                                                                                                |  |  |  |  |  |
|                             | 5. Developing writing skills, including organization, coherence, and proper grammar usage.                                                                                                                                                                                                                   |  |  |  |  |  |

| 6. Listening comprehension and effective note-taking techniques.                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. Speaking skills development, including conversation, pronunciation, and presentation skills.                                                                                                                                                                                                                                     |
| 8. Literary analysis and interpretation of English language texts.                                                                                                                                                                                                                                                                  |
| 9. Historical and cultural influences on the English language.                                                                                                                                                                                                                                                                      |
| 10. Contemporary issues and challenges in the English language.                                                                                                                                                                                                                                                                     |
| <ol> <li>Speaking skills development, including conversation, pronunciation, and presentation skills.</li> <li>Literary analysis and interpretation of English language texts.</li> <li>Historical and cultural influences on the English language.</li> <li>Contemporary issues and challenges in the English language.</li> </ol> |

|            | Learning and Teaching Strategies                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|            | <ol> <li>Lecture delivery: The instructor will present concepts, explanations, and<br/>examples through interactive lectures, incorporating visual aids, multimedia<br/>resources, and real-life examples.</li> <li>Crean extinition. Students will encode in group discussions mean to non-</li> </ol> |  |  |  |  |  |
|            | 2. Group activities: Students will engage in group discussions, peer-to-peer interactions, and collaborative learning tasks to reinforce their understanding of concepts and develop their communication skills.                                                                                        |  |  |  |  |  |
| Strategies | 3. Practical exercises: Students will participate in individual and group exercises, such as grammar quizzes, writing assignments, and pronunciation drills, to apply their knowledge and receive feedback.                                                                                             |  |  |  |  |  |
|            | 4. Multimedia resources: The lecture may incorporate audiovisual materials, online resources, and language learning software to provide a dynamic and interactive learning experience.                                                                                                                  |  |  |  |  |  |
|            | 5. Assessments: Regular assessments, including quizzes, exams, and assignments, will be conducted to measure students' progress and provide constructive feedback for improvement.                                                                                                                      |  |  |  |  |  |
|            | 6. Self-directed learning: Students will be encouraged to engage in independent learning outside of the lecture through recommended readings, online resources, and language practice exercises.                                                                                                        |  |  |  |  |  |

| Student Workload (SWL)                                  |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|
| The student's academic load is calculated for 15 weeks. |  |  |  |  |  |  |
| Structured SWL (h/sem)33Structured SWL (h/w)2.2         |  |  |  |  |  |  |

| Regular student load during the semester                                      |    | Regular weekly student load                               |      |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|------|
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 17 | Unstructured SWL (h/w)<br>Irregular student load per week | 1.13 |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester |    | 50                                                        |      |

| Module Evaluation          |                                                                   |        |                  |       |                |  |  |
|----------------------------|-------------------------------------------------------------------|--------|------------------|-------|----------------|--|--|
| Course material evaluation |                                                                   |        |                  |       |                |  |  |
| А                          | As Time/Nu mber Weight (Marks) Week Due Relevant Learning Outcome |        |                  |       |                |  |  |
|                            | Quizzes                                                           | 0      | 0                | 5, 12 | LO #1, 3 and 7 |  |  |
| Formative<br>assessment    | Assignments                                                       | 0      | 30% (30)         | 4, 13 | LO #2, 4 and 6 |  |  |
|                            | Projects /Lab.                                                    | 0      | 0%               |       |                |  |  |
|                            | Report                                                            | 1      | 20% (10)         | 13    | All            |  |  |
| Summative                  | Midterm Exam                                                      | 2 hrs. | 20% (30)         | 7     | LO #1-6        |  |  |
| assessment                 | Final Exam                                                        | 2 hrs. | 30% (30)         | 16    | All            |  |  |
| , r                        | Total assessment                                                  |        | 100% (100 Marks) |       |                |  |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                     |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | Material Covered                                                                                                    |  |  |  |
| Week 1                          | <ul> <li>Review of basic grammar: Verb tenses (present, past, future)</li> <li>Words in English (Book 4)</li> </ul> |  |  |  |
| Week 2                          | <ul> <li>Present perfect tense</li> <li>Words in English (Book 4)</li> </ul>                                        |  |  |  |

| Week 3  | <ul> <li>Modal verbs: Can, could, may, might, must, should</li> </ul>                        |
|---------|----------------------------------------------------------------------------------------------|
|         | Words in English (Book 4)                                                                    |
| Week 4  | <ul> <li>writing letters and emails.</li> </ul>                                              |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 5  | <ul> <li>Conditional sentences (Type 1)</li> </ul>                                           |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 6  | <ul> <li>Reported speech (statements and questions)</li> </ul>                               |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 7  | Mid torm Evaluation                                                                          |
|         |                                                                                              |
| Week 8  | <ul> <li>Comparative and superlative adjectives and adverbs</li> </ul>                       |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 9  | Passive voice                                                                                |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 10 | Phrasal verbs                                                                                |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 11 | Future forms: Going to, will, and present continuous.                                        |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 12 | Prepositions: Time, place, and movement                                                      |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 13 | Reported speech (commands and requests)                                                      |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 14 | Relative clauses                                                                             |
|         | <ul> <li>Words in English (Book 4)</li> </ul>                                                |
| Week 15 | Bovious and reinforcement of provious tenies before final term evaluation                    |
|         | <ul> <li>Review and reinforcement of previous topics before final term evaluation</li> </ul> |

| Learning and Teaching Resources |                                                                  |                           |  |  |
|---------------------------------|------------------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                             | Available in the Library? |  |  |
| Required Texts                  | English Grammar in Use by Raymond Murphy 5th edition             | No                        |  |  |
| Recommended Texts               | 4000 Essential English words 2nd edition                         | No                        |  |  |
| Websites                        | http://www.duolingo.com/<br>http://www.bbc.co.uk/learningenglish |                           |  |  |

| Module 18<br>Subject information   |              |                       |                              |                                                                                                   |     |
|------------------------------------|--------------|-----------------------|------------------------------|---------------------------------------------------------------------------------------------------|-----|
| Module Title                       | St           | Strength of Materials |                              |                                                                                                   |     |
| Module Type                        |              | Core                  |                              | ⊠ Theory                                                                                          |     |
| Module Code                        |              | <b>RETE 202</b>       |                              | □ Lecture<br>⊠ Lab                                                                                |     |
| ECTS Credits                       | ECTS Credits |                       | 6                            |                                                                                                   |     |
| SWL (hr/sem) 150                   |              | 150                   |                              |                                                                                                   |     |
| Module Level                       |              | 2                     | Semester of                  | Delivery                                                                                          | 4   |
| Administration Department          |              | RETE                  | College                      | College of Oil and Gas Techniques<br>Engineering - Kirkuk, Northern<br>Technical University, Iraq |     |
| Module Leader                      |              |                       | e-mail                       |                                                                                                   |     |
| Module Leader's Acad. Title        |              | Assistant<br>lecturer | Module Lead<br>Qualification | er's                                                                                              | MSc |
| Module Tutor                       |              |                       | e-mail                       |                                                                                                   |     |
| Peer Reviewer Name                 |              |                       | e-mail                       |                                                                                                   |     |
| Scientific Committee Approval Date |              |                       | Version<br>Number            |                                                                                                   |     |

| Relation with other Modules |      |          |  |  |
|-----------------------------|------|----------|--|--|
| Prerequisite module         | None | Semester |  |  |
| Co-requisites module        | None | Semester |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                             |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Module Aims                                            | <ul> <li>To know different types of stresses which may be subjected to the mechanical elements and their expected effects such as strain.</li> <li>To study the shear forces and bending moment diagrams with essential stresses</li> </ul> |  |  |  |

| Module Learning<br>Outcomes | <ul> <li>Students who successfully complete this course will have demonstrated an ability to:         <ul> <li>Understand the concepts of stress and strain at a point as well as the stress-strain relationships for homogenous, isotropic materials.</li> <li>Calculate the stresses and strains in axially-loaded members, circular torsion members, and members subject to flexural loadings.</li> <li>Calculate the stresses and strains associated with thin-wall spherical and cylindrical pressure vessels.</li> <li>Determine the stresses and strains in members subjected to combined loading and apply the theories of failure for static loading.</li> <li>Determine and illustrate principal stresses, maximum shearing stress, and the stresses acting on a structural member.</li> <li>Determine the deflections and rotations produced by the three fundamental types of loads; avial torsional and flowural</li> </ul> </li> </ul> |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             | <ul> <li>Analyze slender, long columns subjected to axial loads.</li> <li>Design simple bars, beams, and circular shafts to allow stresses and loads.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Indicative Contents         | <ol> <li>Introduction to Strength of Materials A. Definition and Importance of<br/>Strength of Materials B. Historical Background C. Applications of Strength of<br/>Materials</li> <li>Stress and Strain A. Basic Definitions B. Types of Stresses C. Types of<br/>Strains D. Hooke's Law</li> <li>Axial Loading A. Normal Stress and Strain B. Deformation of Axially<br/>Loaded Members C. Stress-Strain Diagrams D. Elastic and Plastic<br/>Deformation E. Factor of Safety</li> <li>Torsion A. Torque and Torsional Shear Stress B. Polar Moment of Inertia<br/>C. Torsional Deformation D. Power Transmission in Shafts</li> <li>Bending</li> </ol>                                                                                                                                                                                                                                                                                            |  |  |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this<br>module is to encourage students' participation in the exercises, while at the same<br>time refining and expanding their critical thinking skills. This will be achieved<br>through classes, interactive tutorials and by considering types of simple<br>experiments involving some sampling activities that are interesting to the<br>students<br>Unscheduled Directed Student Hours (time spent away from the timetabled<br>sessions but directed by the teaching staff). |  |  |  |

## Student Workload (SWL)

| Structured SWL (h/sem)<br>Regular student load during the semester            | 93 | Structured SWL (h/w)<br>Regular weekly student load       | 6.2 |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|
| Unstructured SWL (h/sem)<br>Irregular student load during the semester        | 57 | Unstructured SWL (h/w)<br>Irregular student load per week | 3.8 |
| Total SWL (h/sem)<br>The student's total academic load during the<br>semester |    | 150                                                       |     |

| Module Evaluation    |               |                   |          |                              |                  |
|----------------------|---------------|-------------------|----------|------------------------------|------------------|
|                      | Time/Number   | Weight<br>(Marks) | Week Due | Relevant Learning<br>Outcome |                  |
|                      | Quizzes       | 2                 | 10% (10) | 5, 7                         | LO #1, and #3    |
|                      | Assignments   | 3                 | 10% (10) | 3,4,14                       | LO #2, #4 and #8 |
| Formative assessment | Lab Report    | 20                | 20% (20) | Continuous                   | All              |
| Summativo            | Mid Term exam | 2 hours           | 10% (10) | 7                            | LO #1-4          |
| assessment           | Final Exam    | 3hr               | 50% (50) | 16                           | All              |
| 100% (100 Marks)     |               |                   |          |                              |                  |

| Delivery Plan (Weekly Syllabus) |                                                  |  |
|---------------------------------|--------------------------------------------------|--|
| Week 1                          | simple stress                                    |  |
| Week 2                          | Shearing stress, Bearing stress                  |  |
| Week 3                          | Thin wall cylinders                              |  |
| Week 4                          | Simple strain, stress-strain diagram, Hook's law |  |
| Week 5                          | Thermal stress                                   |  |
| Week 6                          | Welded connection                                |  |
| Weeks 7                         | Riveted joints                                   |  |
| Weeks 8                         | Torsion                                          |  |
| Week 9                          | Spring                                           |  |
| Week 10                         | Shear and moment in Beam                         |  |
| Week 11                         | Beam deflection                                  |  |
| Week 12                         | Mid-Term Exam                                    |  |

| Week 13 | Combined stresses               |
|---------|---------------------------------|
| Week 14 | Stress at a point / Mohr circle |
| Week 15 | Preparing for the final exam    |

| Delivery Plan (Weekly Lab. Syllabus) |                                             |
|--------------------------------------|---------------------------------------------|
|                                      | Material Covered                            |
| Week 1                               | Lab 1:Introduction to Strength of materials |
| Week 2                               | Lab 2: Brinell Hardness Test                |
| Week 3                               | Lab 3: Rockwell Hardness Test               |
| Week 4                               | Lab 4: Vickers Hardness Test                |
| Week 5                               | Lab 5: Tensile Test                         |
| Week 6                               | Lab 6: Compression Test                     |
| Week 7                               | Lab 7: Torsion Test                         |
| Week 8                               | Lab 8: Creep Test                           |
| Week 9                               | Lab 9: Spring Stiffness                     |
| Week 10                              | Lab 10: Deflection in Cantilever Beam Test  |

| Learning and Teaching Resources |                                                              |                           |  |
|---------------------------------|--------------------------------------------------------------|---------------------------|--|
|                                 | Text                                                         | Available in the Library? |  |
| Required Texts                  | Strength of Materials, Ferdinand L. Singer and Andrew Pytel. | Yes                       |  |
| Recommended Texts               | Schaum's Outline of Strength of Materials                    | No                        |  |

| Module 19<br>Subject information |                 |                    |                               |                                                     |                                     |                               |  |
|----------------------------------|-----------------|--------------------|-------------------------------|-----------------------------------------------------|-------------------------------------|-------------------------------|--|
| Module Title                     | E               | TS Module Delivery |                               |                                                     |                                     |                               |  |
| Module Type                      | Core            |                    |                               | ⊠Theory                                             |                                     |                               |  |
| Module Code                      | <b>RETE 203</b> |                    |                               |                                                     | □Lecture<br>⊠Lab                    |                               |  |
| ECTS Credits                     | 7               |                    |                               |                                                     | ⊠Tutorial<br>□Practical<br>□Seminar |                               |  |
| SWL (hr/sem)                     | 175             |                    |                               |                                                     |                                     |                               |  |
| Module Level                     |                 | 2                  | Semester of Delivery          |                                                     | 4                                   |                               |  |
| Administering Department         |                 | RETE               | College                       | College of Oil & Gas Techniqu<br>Engineering/Kirkuk |                                     | z Gas Techniques<br>ng/Kirkuk |  |
| Module Leader                    | •               |                    | e-mail                        | @ntu.ed                                             | @ntu.edu.iq                         |                               |  |
| Module Leader's Acad. Title      |                 |                    | Module Leader's Qualification |                                                     |                                     |                               |  |
| Module Tutor                     | None            |                    | e-mail                        | il None                                             |                                     |                               |  |
| Peer Reviewer Name               |                 | Asst. Lect.        | e-mail                        | @ntu.ed                                             | ntu.edu.iq                          |                               |  |
| <b>Review Committee Approval</b> |                 | 06/01/2023         | Version Number 1.0            |                                                     |                                     |                               |  |

| Relation with Other Modules<br>Relationship with other subjects |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                              |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|--|
| Prerequisite module                                             | Electronics ECE102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Semester | Level 1<br>Semester 2                                        |  |
| Co-requisites module                                            | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Semester |                                                              |  |
| Module Aims, Learning Outcomes and Indicative Contents          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                              |  |
| Module Aims                                                     | <ul> <li>Basically, the module aims to establish a strong foundation in electronic of enabling the students to analyze and design basic electronic circul understand their applications in various fields such as control systelecommunications and consumer electronics. The main module aims ar</li> <li>1. Understanding fundamental concepts.</li> <li>2. Developing electronic circuit analysis skills.</li> <li>3. Family with electronic components.</li> <li>4. Developing amplifier design skills.</li> <li>5. Practical circuit design and analysis.</li> <li>6. Introduction to integrated circuits.</li> </ul> |          | ronic circuits,<br>circuits and<br>trol systems,<br>ims are: |  |

|                             | The module learning outcomes include the following:                                                                                                                                                                                                                                                                                                                  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Module Learning<br>Outcomes | 22. <b>Knowledge and Understanding</b> : Students should demonstrate a solid knowledge and understanding of the fundamental concepts, principles, and theories related to electronic circuits. They should be able to explain the behavior and characteristics of electronic components and their applications in circuit design.                                    |  |  |
|                             | 23. <b>Circuit Analysis Skills</b> : Students should be able to apply circuit analysis techniques, including Kirchhoff's laws, nodal analysis, and mesh analysis, to solve electronic circuit problems. They should be able to analyze and predict the behavior of circuits under different conditions.                                                              |  |  |
|                             | 24. <b>Design and Evaluation</b> : Students should be able to design and evaluate basic electronic circuits, including amplifiers, using appropriate design principles and techniques. They should understand the trade-offs and considerations involved in circuit design, such as gain, bandwidth, stability, and power efficiency.                                |  |  |
|                             | 25. <b>Practical Skills</b> : Students should possess practical skills in building, testing, and troubleshooting electronic circuits. They should be able to use laboratory equipment and tools effectively and safely. They should also demonstrate the ability to analyze and interpret experimental data and draw conclusions based on the results.               |  |  |
|                             | 26. <b>Integration of Knowledge</b> : Students should be able to integrate their knowledge of electronic circuits with other relevant areas, such as mathematics, physics, and computer science. They should be able to apply their knowledge to solve interdisciplinary problems and understand the broader context of electronic circuits in various applications. |  |  |
|                             | 27. <b>Communication and Presentation Skills</b> Students should be able to communicate their ideas, analysis, and design concepts effectively, both orally and in written form. They should be able to present their work and findings in a clear and organized manner, using appropriate technical terminology.                                                    |  |  |
|                             | <ol> <li>Review of basic concepts:</li> <li>Diode structure, operation, types and applications.</li> </ol>                                                                                                                                                                                                                                                           |  |  |
| Indicative Contents         | <ul> <li>2. Bipolar Junction Transistors (BJTs): BJT structure, operation, characteristics and biasing techniques.</li> <li>o Field-Effect Transistors (FETs): (JFET and MOSFET) structure, operation, characteristics and biasing techniques.</li> </ul>                                                                                                            |  |  |
|                             | 3. Amplifier configurations:<br>o BJT amplifiers: common emitter, common base, and common<br>collector configurations.                                                                                                                                                                                                                                               |  |  |

|            | o FET amplifiers: common source, common gate, and common dra<br>configurations                                                                                                                                                                                                                                                                                                                     |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | <ul><li>4. Amplifier circuits:</li><li>o BJT small-signal amplifiers: voltage gain, current gain, and power gain.</li></ul>                                                                                                                                                                                                                                                                        |  |  |
|            | o FET small-signal amplifiers: voltage gain, current gain, and power gain.                                                                                                                                                                                                                                                                                                                         |  |  |
|            | o Multistage amplifiers and cascaded amplifiers.                                                                                                                                                                                                                                                                                                                                                   |  |  |
|            | <ul><li>o Differential amplifiers.</li><li>5. Power Amplifiers:</li></ul>                                                                                                                                                                                                                                                                                                                          |  |  |
|            | o Class A, B, AB, and C power amplifiers                                                                                                                                                                                                                                                                                                                                                           |  |  |
|            | Amplifier frequency response and bandwidth:                                                                                                                                                                                                                                                                                                                                                        |  |  |
|            | <ul><li>o BJT and FET amplifiers.</li><li>6. Power supply basics:</li></ul>                                                                                                                                                                                                                                                                                                                        |  |  |
|            | o rectification, filtering, and regulation.                                                                                                                                                                                                                                                                                                                                                        |  |  |
|            | Learning and Teaching Strategies                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|            | To effectively deliver the electronic circuits module, instructors may employ the following strategies:                                                                                                                                                                                                                                                                                            |  |  |
| Strategies | 1. <b>Lectures</b> Conducting lectures is a traditional method to deliver theoretical concepts and principles. Instructors can use multimedia resources, such as slides, visual aids, and demonstrations, to enhance understanding. They should focus on clear explanations, real-life examples, and engaging students through interactive discussions.                                            |  |  |
|            | 2. <b>Practical Sessions</b> : Practical sessions in a laboratory setting are essential for students to apply theoretical knowledge to hands-on circuit design, construction, and testing. Instructors can guide students through experiments and provide opportunities for them to troubleshoot and analyze circuit behavior. This approach reinforces understanding and builds practical skills. |  |  |
|            | 3. <b>Problem-Solving Exercises</b> Assigning problem-solving exercises<br>encourage students to practice circuit analysis techniques and apply<br>theoretical concepts to solve complex problems. Instructors can provide a<br>range of problems at different difficulty levels, offering opportunities for                                                                                       |  |  |

students to work individually or in groups. Feedback and discussions on problem-solving strategies further enhance learning.

4.**Design Projects**: Design projects allow students to integrate their knowledge and skills to design and implement electronic circuits to meet specific requirements. Instructors can assign individual or group projects that involve circuit design, simulation, prototyping, and testing. This approach fosters creativity, critical thinking, and problem-solving abilities.

5.**Simulation Tools**: Using circuit simulation software, such as SPICE (Simulation Program with Integrated Circuit Emphasis), instructors can provide virtual environments for students to design and analyze circuits. Simulations allow students to experiment with different circuit configurations, evaluate performance, and observe behavior in a controlled manner. It also facilitates rapid prototyping and exploration of complex circuits.

6.**Interactive Demonstrations**: Instructors can conduct interactive demonstrations to illustrate the behavior of electronic circuits in real-time. These demonstrations can involve circuit construction on a breadboard or using simulation software. By engaging students through live demonstrations, instructors can reinforce concepts and clarify difficult topics.

7.**Group Discussions and Peer Learning** Encouraging group discussions and peer learning can promote active engagement and knowledge sharing among students. Instructors can assign problem-solving tasks or case studies to group discussions, allowing students to collaborate, exchange ideas, and learn from each other's perspectives and approaches.

8.**Assessment and Feedback** Assessments, including quizzes, tests, and assignments, are essential for evaluating students' understanding and progress. Instructors should provide timely and constructive feedback to help students identify areas for improvement. Feedback can be provided through individualized comments, grading rubrics, or face-to-face discussions.

9.**Guest Speakers and Industry Visits**: Inviting guest speakers from industry or academia and organizing visits to relevant companies or research labs that can provide students with real-world insights and applications of electronic circuits. These opportunities allow students to connect theoretical knowledge with practical applications and gain exposure to industry practices.
| By incorporating a combination of these strategies, instructors can create an |
|-------------------------------------------------------------------------------|
| engaging and comprehensive learning experience for students in the            |
| electronic circuits module. It is important to adapt and modify these         |
| strategies based on the specific needs of the students and the available      |
| resources.                                                                    |
|                                                                               |

| Student Workload (SWL)                                                        |     |                                                           |      |  |
|-------------------------------------------------------------------------------|-----|-----------------------------------------------------------|------|--|
| Structured SWL(h/same)<br>Regular student load during the<br>semester         | 93  | Structured SWL (h/w)<br>Regular weekly student load       | 6.2  |  |
| Unstructured SWL(h/same)<br>Irregular student load during the<br>semester     | 82  | Unstructured SWL (h/w)<br>Irregular student load per week | 5.46 |  |
| Total SWL(h/same)<br>The student's total academic load<br>during the semester | 175 |                                                           |      |  |

| Module Evaluation       |                |         |                  |              |                       |  |
|-------------------------|----------------|---------|------------------|--------------|-----------------------|--|
|                         |                | Time/Nu | Weight (Marks)   | Week Due     | Relevant Learning     |  |
|                         |                | mber    | weight (Marks)   |              | Outcome               |  |
|                         | Quizzes        | 5       | 10% (10)         | 1,3,5,8,11   | LO #1, 2, 10,11and 13 |  |
| Formative<br>assessment | Assignments    | 5       | 10% (10)         | 2, 4,6,10,12 | LO # 3, 4, 6,7 and 8  |  |
|                         | Projects /Lab. | 14      | 10% (10)         | Continuous   |                       |  |
|                         | Report         | 1       | 10% (10)         | 13           | LO # 5, 8 and 10      |  |
| Summative               | Midterm Exam   | 2 hours | 10% (10)         | 7            | LO #1-7               |  |
| assessment              | Final Exam     | 2hr     | 50% (50)         | 16           | All                   |  |
| Total assessment        |                |         | 100% (100 Marks) |              |                       |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                                                                                                                                                                                   |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                 | Material Covered                                                                                                                                                                                                                                                                                                  |  |  |
|                                 | Review of basic concepts:                                                                                                                                                                                                                                                                                         |  |  |
| Week 1                          | <ul> <li>Diode structure, operation, types and applications.</li> <li>Bipolar Junction Transistors (BJTs): BJT structure, operation, characteristics and biasing techniques.</li> <li>Field-Effect Transistors (FETs): (JFET and MOSFET) structure, operation, characteristics and biasing techniques.</li> </ul> |  |  |

|          | Amplifier configurations:                                                                                                                                                                                                                                                |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Week 2-3 | <ul> <li>BJT amplifiers: common emitter, common base, and common collector configurations.</li> <li>FET amplifiers: common source, common gate, and common drain configurations</li> </ul>                                                                               |  |
|          | Amplifier circuits:                                                                                                                                                                                                                                                      |  |
| Week 4-7 | <ul> <li>BJT small-signal amplifiers: voltage gain, current gain, and power gain.</li> <li>FET small-signal amplifiers: voltage gain, current gain, and power gain.</li> <li>Multistage amplifiers and cascaded amplifiers.</li> <li>Differential amplifiers.</li> </ul> |  |
| Week 8-  | Power Amplifiers:                                                                                                                                                                                                                                                        |  |
| 10       | • Class A, B, AB, and C power amplifiers                                                                                                                                                                                                                                 |  |
| Week 11- | Amplifier frequency response and bandwidth:                                                                                                                                                                                                                              |  |
| 12       | • BJT and FET amplifiers.                                                                                                                                                                                                                                                |  |
| Week 13- | Power supply basics:                                                                                                                                                                                                                                                     |  |
| 14       | o rectification, filtering, and regulation.                                                                                                                                                                                                                              |  |
| Week 15  | Preparatory Week                                                                                                                                                                                                                                                         |  |
| Week 16  | Final Exam                                                                                                                                                                                                                                                               |  |

| Delivery Plan (Weekly Lab. Syllabus) |                                                              |  |
|--------------------------------------|--------------------------------------------------------------|--|
|                                      | Material Covered                                             |  |
| Week 1                               | BJT amplifier DC biasing techniques.                         |  |
| Week 2                               | FET amplifier DC biasing techniques.                         |  |
| Week 3-4                             | BJT small signal amplifier configurations.                   |  |
| Week 5-6                             | FET small signal amplifier configurations.                   |  |
| Week 7-8                             | Multistage amplifiers and cascaded amplifiers.               |  |
| Week 9                               | Differential amplifiers.                                     |  |
| Week 10                              | Power Amplifiers: Class A, B, AB, and C power amplifiers     |  |
| Week 11-                             | Pandwidth and frequency response of PIT and FFT amplifiant   |  |
| 12                                   | bandwidth and frequency response of by r and FET amplifiers. |  |

| Week 13- |                                                                  |
|----------|------------------------------------------------------------------|
| 14       | Power supply circuits: rectification, filtering, and regulation. |

| Learning and Teaching Resources |                                                                                                                                          |                              |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                 | Text                                                                                                                                     | Available in the<br>Library? |
| Required Texts                  | Thomas L. Floyd. 2006. Electric Circuit Fundamentals (7th Edition) (Floyd Electronics Fundamentals Series). Prentice-Hall, Inc., USA.    | Yes                          |
| Recommended<br>Texts            | Adel S. Sedra and Kenneth C. Smith. 2007. Microelectronic<br>Circuits Revised Edition (5th. ed.). Oxford University Press,<br>Inc., USA. | No                           |
| Websites                        | https://www.coursera.org/                                                                                                                |                              |

| Module 20<br>Subject information |                      |                                |                       |                                                                                                   |       |
|----------------------------------|----------------------|--------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|-------|
| Module Title                     | Refrig               | eration & Air Co<br>Principles | nditioning            | Module Delivery                                                                                   |       |
| Module Type                      |                      | Core                           |                       | ⊠Theory                                                                                           |       |
| Module Code                      |                      | <b>RETE 204</b>                |                       | □ Lecture<br>⊠ Lab                                                                                |       |
| ECTS Credits                     | 5                    |                                |                       | Tutorial                                                                                          |       |
| SWL (hr/sem)                     | 125                  |                                |                       | $\Box$ Seminar                                                                                    |       |
| Module Level                     |                      | 2                              | Semester of           | Delivery                                                                                          | 4     |
| Administration Department        |                      | RETE                           | College               | College of Oil and Gas Techniques<br>Engineering - Kirkuk, Northern Technical<br>University, Iraq |       |
| Module Leader                    | Marwa Khaleel Rashid |                                | e-mail                | marwa.khaleel23@ntu.edu.iq                                                                        |       |
| Module Leader's Acad. Title      |                      | Assistant<br>lecturer          | Module Leader's M.Sc. |                                                                                                   | M.Sc. |
| Module Tutor                     |                      |                                | e-mail                |                                                                                                   |       |
| Peer Reviewer Name               |                      |                                | e-mail                |                                                                                                   |       |

| Scientific Committee Approval | Version |  |
|-------------------------------|---------|--|
| Date                          | Number  |  |

| Relation with other Modules        |      |          |  |  |  |
|------------------------------------|------|----------|--|--|--|
| Prerequisite module                | None | Semester |  |  |  |
| Co-requisites module None Semester |      |          |  |  |  |

| Module Aims,                | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ol> <li>Understand the basic principles of refrigeration and air conditioning systems.</li> <li>To understand the fundamental properties of Air and Water vapor mixture.</li> <li>This course deals with the basic concept of air-conditioning processes.</li> <li>Identify and describe the components of a typical refrigeration and air conditioning system.</li> <li>To explain the thermodynamic principles involved in refrigeration and air conditioning processes.</li> <li>Demonstrate knowledge of refrigerants and their properties, including safety</li> </ol>                                                                                                                                                                                        |
| Module Learning<br>Outcomes | <ol> <li>Define Refrigeration and Air conditioning and identify their applications.</li> <li>Define and calculate moist air properties using related equations.</li> <li>Recognize how to use a Psychrometric chart in solving various Air conditioning processes.</li> <li>Analyze the simple vapor compression cycle.</li> <li>Describe the factors affecting vapor compression cycle performance.</li> <li>Identify the multi-pressure refrigeration systems.</li> <li>Recognize the types of refrigerant and their effect on Ozone and How to Number it</li> </ol>                                                                                                                                                                                              |
| Indicative Contents         | Indicative content includes the following.<br>Part A - Air conditioning<br>Air conditioning definition, Air conditioning systems and applications, SI<br>units, Fundamental properties of Air and Water vapor mixture; Definition of<br>(moist air properties), Calculation of moist air properties using related<br>equations. [14 hrs]<br>Psychrometric chart and its construction, Air-conditioning processes, Air-<br>conditioning processes (sensible cooling, and sensible heating). [14 hrs]<br>Air-conditioning processes (Dehumidification, Humidification, Mixing of air<br>streams, Cooling and dehumidification with reheat, and Pre-heating with<br>humidification and reheat). [14 hrs]<br>Summer and winter cycle. [4 hrs]<br>Part B - Refrigeration |

| Refrigeration definition, Refrigeration systems and applications, heat pump,    |
|---------------------------------------------------------------------------------|
| reversed Carnot cycle, [7 hrs]                                                  |
| Simple vapor compression cycle components and analysis, Ideal and actual vapor  |
| compression cycle, factors affecting vapor compression cycle performance, Multi |
| Pressure systems. [30 hrs]                                                      |
| Refrigerants. [14 hrs]                                                          |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Strategies                       | The Refrigeration and Air Conditioning module employs a range of effective learning and teaching strategies. Students engage in theoretical lectures, practical demonstrations, and hands-on laboratory sessions to grasp the underlying principles and gain practical skills. Case studies and real-world scenarios enhance problem-solving abilities, while group projects foster teamwork and communication skills. Continuous assessment methods, including assignments and practical assessments, ensure students' progress and understanding of the subject matter. The module promotes equipping students with the knowledge and skills necessary for success in the field of refrigeration and air conditioning. |  |  |

| Student Workload (SWL)                     |                                       |                                 |       |  |
|--------------------------------------------|---------------------------------------|---------------------------------|-------|--|
| Structured SWL (h/sem)                     | 62                                    | Structured SWL (h/w)            | 4.5   |  |
| Regular student load during the semester   | 05                                    | Regular weekly student load     | 4.2   |  |
| Unstructured SWL (h/sem)                   |                                       | Unstructured SWL (h/w)          | 1 1 2 |  |
| Irregular student load during the semester | 02                                    | Irregular student load per week | 4.15  |  |
| Total SWL (h/sem)                          |                                       |                                 |       |  |
| The student's total academic load during   | Jent's total academic load during 125 |                                 |       |  |
| the semester                               |                                       |                                 |       |  |

| Module Evaluation |               |             |                   |                    |                              |
|-------------------|---------------|-------------|-------------------|--------------------|------------------------------|
|                   |               | Time/Number | Weight<br>(Marks) | Week Due           | Relevant Learning<br>Outcome |
|                   | Quizzes       | 5           | 10% (10)          | 3,6,8 and<br>12,14 | LO #1, #3 #6, #8, and 10     |
| Formative         | Assignments   | 4           | 10% (10)          | 2,4,9,and 14       | LO #2, #4, #5 and #7         |
| assessment        | Lab Report    | 10          | 20% (20)          | Continuous         | All                          |
| Summativo         | Mid Term exam | 2 hours     | 10% (10)          | 7                  | LO #1-3                      |
| assessment        | Final Exam    | 3hr         | 50% (50)          | 16                 | All                          |
| 100% (100 Marks)  |               |             |                   |                    |                              |

|         | Delivery Plan (Weekly Syllabus)                                                                                                                                                                                                                                                       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 1  | Air conditioning, Air conditioning systems, SI units, Fundamental properties of Air and Water vapor mixture; definition of (moist air properties), Dry bulb, wet bulb and Dew point temperatures, partial pressure, Relative humidity, moisture content, Specific volume and Enthalpy |
| Week 2  | The General Gas Law, Dalton's law of partial pressure, Calculation of moist air properties using related equations.                                                                                                                                                                   |
| Week 3  | Psychrometric chart, Construction of psychrometric chart, Sensible Heat and Latent Heat.                                                                                                                                                                                              |
| Week 4  | Air-conditioning processes, Adiabatic saturation process, sensible cooling, and sensible heating.                                                                                                                                                                                     |
| Week 5  | Dehumidification; By pass factor, contact factor, Humidification – Humidification by water injection, steam injection.                                                                                                                                                                |
| Week 6  | Mixing of air streams, Cooling and dehumidification with reheat                                                                                                                                                                                                                       |
| Weeks 7 | Mid-Term Exam                                                                                                                                                                                                                                                                         |
| Weeks 8 | Preheating with humidification and reheat. Summer and winter cycle.                                                                                                                                                                                                                   |
| Week 9  | Refrigeration application, refrigeration theory, heat pump, reversed Carnot cycle.                                                                                                                                                                                                    |
| Week 10 | Simple vapor compression cycle, vapor compression cycle components, Simple vapor compression cycle analysis                                                                                                                                                                           |
| Week 11 | Ideal and actual vapor compression cycle, factors affecting vapor compression cycle performance (effect of suction temperature, effect of condensing temperature, effect of sub cooling, effect of superheating, effect of pressure loss).                                            |
| Week 12 | Multi Pressure systems: Removing flash gas, inter-cooler                                                                                                                                                                                                                              |
| Week 13 | Single evaporator and single compressor, single compressor and two evaporators.                                                                                                                                                                                                       |
| Week 14 | Two compressors and two evaporators, multi-stage compression cycle using, water intercooler, flash intercooler, liquid refrigerants intercooler                                                                                                                                       |
| Week 15 | Preparing for the final exam                                                                                                                                                                                                                                                          |

| Delivery Plan (Weekly Lab. Syllabus) |                                                               |  |
|--------------------------------------|---------------------------------------------------------------|--|
|                                      | Material Covered                                              |  |
| Week 1                               | Lab 1: Measuring air velocity using Pitot tube and Manometer. |  |
| Week 2                               | Lab 2: Air Properties.                                        |  |
| Week 3                               | Lab 3: Application on air Psychrometric chart.                |  |

| Week 4  | Lab 4: Sensible heating.                                                                      |
|---------|-----------------------------------------------------------------------------------------------|
| Week 5  | Lab 5: Sensible cooling.                                                                      |
| Week 6  | Lab 6: Dehumidification of air                                                                |
| Week 7  | Lab 7: Heating with humidification of air.                                                    |
| Week 8  | Lab 8: Mixing of air.                                                                         |
| Week 9  | Lab 9: Refrigerator and heat pump.                                                            |
| Week 10 | Lab 10: Calculation of the capacity and coefficient of performance of vapor compression unit. |

| Learning and Teaching Resources |                                                          |                           |  |  |
|---------------------------------|----------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                     | Available in the Library? |  |  |
| Required Texts                  | Refrigeration & Air Conditioning, W. F. Stoecker & J. W. | NO                        |  |  |
|                                 | Jones, Second Edition, McGraw-Hill, Inc.                 |                           |  |  |
| Recommended Texts               | Air Conditioning Engineering, W. P. Jones, Fifth Edition | No                        |  |  |
|                                 | Elsevier Butterworth-Heinemann                           |                           |  |  |
|                                 | https://www.ashrae.org/technical-resources/ashrae-       |                           |  |  |
|                                 | handbook                                                 |                           |  |  |

|              |          | Modu<br>Subject inf | le 21<br>formation |                 |   |
|--------------|----------|---------------------|--------------------|-----------------|---|
| Module Title |          | Electrical machines |                    | Module Delivery |   |
| Module Type  | Core     |                     | ⊠Theory            |                 |   |
| Module Code  | RETE 205 |                     | □Lecture           |                 |   |
| ECTS Credits | 6        |                     | ⊠Lab               |                 |   |
|              |          |                     |                    | 🛛 Tutorial      |   |
| SWL (hr/sem) | 150      |                     |                    |                 |   |
|              |          | □Seminar            |                    |                 |   |
| Module Level |          | 2 Semester of De    |                    | Delivery        | 4 |

| Administering Department              |                     | RETE               | College                       | College of Oil & Gas Techniques<br>Engineering/Kirkuk |      | Techniques |
|---------------------------------------|---------------------|--------------------|-------------------------------|-------------------------------------------------------|------|------------|
| Module Leader                         | Saygin Siddiq Ahmed |                    | e-mail                        | Saygin.ahmed@ntu.edu.iq                               |      | .iq        |
| Module Leader's Acad. Title           |                     | Assistant lecturer | Module Leader's Qualification |                                                       | M.Sc |            |
| Module Tutor                          |                     |                    | e-mail                        |                                                       |      |            |
| Peer Reviewer Name                    |                     |                    | e-mail                        |                                                       |      |            |
| Scientific Committee Approval<br>Date |                     |                    | Version Nu                    | mber                                                  | 1.0  |            |

| Relation with other Modules |      |          |  |
|-----------------------------|------|----------|--|
| Prerequisite module         | None | Semester |  |
| Co-requisites module        | None | Semester |  |

| Modu                        | le Aims, Learning Outcomes and Indicative Contents                                                                                                                                        |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                                                                                                                                                                           |
| Module Aims                 | <ul> <li>3- Connect electrical circuits and compare theoretical results with practical.1</li> <li>4- Introduce the student to understand electrical theories and prove them in</li> </ul> |
|                             | 5- The student can distinguish between direct current and alternating current                                                                                                             |
| Module Learning<br>Outcomes | 10. To familiarize the student with the importance of The most important electrical principles                                                                                            |
|                             | 11. Learning Outcomes, Teaching, Learning and Assessment Methods                                                                                                                          |
|                             | <ol> <li>To distinguish the electrical components and parts and their working<br/>principle.</li> </ol>                                                                                   |
|                             | Indicative content includes the following.                                                                                                                                                |
| Indicative Contents         | Part A -Principles of circuits                                                                                                                                                            |
|                             | To develop the student's mental ability to connect simple and complex circuits.                                                                                                           |
|                             | The student learns how to develop a strategy to change a complex circuit to a simple                                                                                                      |
|                             | circuit with the same results.                                                                                                                                                            |

| Part B – Principles to connect circuits                                  |
|--------------------------------------------------------------------------|
| The student learns to connect circuits according to the circuit diagram. |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this module<br>is to encourage students' participation in the exercises, while at the same time refining<br>and expanding their critical thinking skills. This will be achieved through classes,<br>interactive tutorials and by considering type of simple experiments involving some<br>sampling activities that are interesting to the students. |  |  |

| Student Workload (SWL)                                                        |    |                                                           |     |  |  |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|--|--|
| The student's academic load is calculated for 15 weeks.                       |    |                                                           |     |  |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester         | 78 | Structured SWL (h/w)<br>Regular weekly student load       | 5.2 |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 72 | Unstructured SWL (h/w)<br>Irregular student load per week | 4.8 |  |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester |    | 150                                                       |     |  |  |

| Module Evaluation |                 |                |          |                              |
|-------------------|-----------------|----------------|----------|------------------------------|
|                   | Time/Nu<br>mber | Weight (Marks) | Week Due | Relevant Learning<br>Outcome |

|                         | Quizzes        | 2                | 10% (10) | 5, 10      | LO #2, and   |
|-------------------------|----------------|------------------|----------|------------|--------------|
| Formative<br>assessment | Assignments    | 2                | 10% (10) | 2, 12      | LO #3, and 7 |
|                         | Projects /Lab. | 1                | 10% (10) | Continuous | All          |
|                         | Report         | 10               | 10% (10) | Continuous | All          |
| Summative               | Midterm Exam   | 2 hours          | 10% (10) | 7          | LO #1-7      |
| assessment              | Final Exam     | 3hr              | 50% (50) | 16         | All          |
| Total assessment        |                | 100% (100 Marks) |          |            |              |

| Delivery Plan (Weekly Syllabus) |                                                                                                                 |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
|                                 | Material Covered                                                                                                |  |  |
| Week 1                          | Transformers: Operating principle, classification, construction                                                 |  |  |
| Week 2                          | Emf equation, phasor diagrams, Equivalent circuit model, Losses & efficiency,                                   |  |  |
| Week 3                          | Voltage regulation, frequency response, polarity test                                                           |  |  |
| Week 4                          | Autotransformers, Isolation & instrument transformers                                                           |  |  |
| Week 5                          | DC Machines: Operating principle, generator & motor action, construction,                                       |  |  |
| Week 6                          | Types of excitation, EMF & torque equations, Power stages & efficiency                                          |  |  |
| Week 7                          | Commutation, Armature Reaction, Characteristics & applications of dc generators                                 |  |  |
| Week 8                          | Starting & speed control of dc motors, Characteristics & applications of dc motors                              |  |  |
| Week 9                          | Midterm Exam                                                                                                    |  |  |
| Week 10                         | Induction Machines: Three-phase induction motors. Principle of operation, construction, types                   |  |  |
| Week 11                         | Rotating magnetic field, emf equation of an AC Machine, Torque developed in an induction motor                  |  |  |
| Week 12                         | Torque-speed characteristics, Starting & speed control, Single phase induction motors,<br>Starting, application |  |  |
| Week 13                         | Synchronous Machines:                                                                                           |  |  |

|         | Construction, types & operating principle of synchronous generator, AC armature windings,<br>Equivalent circuit, Phasor diagrams |
|---------|----------------------------------------------------------------------------------------------------------------------------------|
| Week 14 | Voltage regulation, parallel operation, synchronization                                                                          |
| Week 15 | Power Angle characteristics, effect of field excitation change                                                                   |
| Week 16 | Final Exam                                                                                                                       |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                                  |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------|--|--|--|
|                                      | Material Covered                                                                 |  |  |  |
| Week 1                               | Applications DC motors acquired, installed and types                             |  |  |  |
| Week 2                               | Applications Electromotive force equalization velocity speed control             |  |  |  |
| Week 3                               | Applications DC motor torque in the laboratory                                   |  |  |  |
| Week 4                               | Torque and speed in the laboratory                                               |  |  |  |
| Week 5                               | Applications Characteristics of all types of DC motors                           |  |  |  |
| Week 6                               | Applications ingle motors in the laboratory                                      |  |  |  |
| Week 7                               | Applications Three-phase starter in the laboratory                               |  |  |  |
| Week 8                               | star and a triangle in single & three phase                                      |  |  |  |
| Week 9                               | Midterm Exam                                                                     |  |  |  |
| Week 10                              | Students watching the types of DC motors in the laboratory                       |  |  |  |
| Week 11                              | Students watching the shape of the transistor in the laboratory and how it works |  |  |  |
| Week 12                              | Electromotive force equalization velocity speed control                          |  |  |  |
| Week 13                              | Applications full wave uniform and see the wave on the OSC                       |  |  |  |
| Week14                               | Applications uniform half wave and see the wave on the OSC                       |  |  |  |

| Week 15 | Preparatory week before the final exam |
|---------|----------------------------------------|
| Week16  | Final Exam                             |

| Learning and Teaching Resources |                                                                     |                              |  |  |
|---------------------------------|---------------------------------------------------------------------|------------------------------|--|--|
|                                 | Text                                                                | Available in the<br>Library? |  |  |
| Required Texts                  | "Basic Electrical Engineering", THERAJA.                            | Yes                          |  |  |
| Recommended Texts               | "Electrical and Electronic Principles and Technology", John<br>Bird | Yes                          |  |  |
| Websites                        | Basic Electrical machines website tutorials                         |                              |  |  |

| Module 22<br>Subject information |          |                               |                                                              |           |                               |  |
|----------------------------------|----------|-------------------------------|--------------------------------------------------------------|-----------|-------------------------------|--|
| Module Title                     | Computer |                               |                                                              | Module De | elivery                       |  |
| Module Type                      |          | Basic                         |                                                              | MTheory   |                               |  |
| Module Code                      |          | NTU 202                       |                                                              |           |                               |  |
| ECTS Credits                     |          | 3                             |                                                              |           |                               |  |
| SWL (hr/sem)                     | 75       |                               |                                                              |           |                               |  |
| Module Level                     |          | 2                             | Semester of Delivery                                         |           | 4                             |  |
| Administering Department         |          | RETE                          | CollegeCollege of Oil and Gas Te<br>Engineering – Kirkuk (CC |           | Gas Techniques<br>1k (COGTEK) |  |
| Module Leader                    |          |                               | e-mail                                                       |           |                               |  |
| Module Leader's Acad. Title      |          | Module Leader's Qualification |                                                              |           |                               |  |
| Module Tutor                     |          |                               | e-mail                                                       | Email     |                               |  |
| Peer Reviewer Name               |          |                               | e-mail                                                       | Email     |                               |  |

| Scientific Committee Approval<br>Date | Version Number |  |
|---------------------------------------|----------------|--|
|---------------------------------------|----------------|--|

| Relation with other Modules |          |          |   |  |
|-----------------------------|----------|----------|---|--|
| Prerequisite module         | Computer | Semester | 2 |  |
| Co-requisites module        | None     | Semester |   |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Module Aims                                            | <ul> <li>MATLAB is a widely used programming language and computational tool for numerical analysis, data visualization, and scientific computing. In undergraduate curricula, MATLAB teaching goals include developing students' skills in programming, data analysis, and problem solving, as well as providing them with a practical understanding of mathematical concepts and the analysis of complex computations and algorithms.</li> <li>The most crucial goals for teaching MATLAB include learning outcomes, which include: <ol> <li>Introduction to Programming: MATLAB is frequently used in academic curriculum as an introductory programming language. The main goal is to familiarize students with fundamental ideas in programming, including variables, data, control structures, functions, and types of algorithms.</li> </ol> </li> <li>Numerical Computation: MATLAB is frequently used for numerical computation, and one of the primary objectives of the MATLAB study program is to teach students how to conduct mathematical calculations, work with matrices, solve challenging equations, and put algorithms into practice for scientific, engineering, and mathematical applications.</li> <li>Data Analysis and Visualization. The built-in functions, toolboxes, and simulations of MATLAB are used by students to construct plots and graphs, show data in various forms, and do statistical analysis.</li> <li>Simulation and Modeling: Many simulation and modeling jobs are performed using MATLAB. Students will learn how to create mathematical models, simulate systems, and analyze their behavior by utilizing MATLAB's simulation features.</li> </ul> |  |  |  |

|                             | <ul> <li>5- Development of applications: MATLAB enables the creation of standalone programs and GUI-based user interfaces. For their projects and scientific research, students can learn how to write interactive programs, publish MATLAB code as standalone applications, and develop user-friendly interfaces.</li> <li>6- Development of applications: MATLAB enables the creation of standalone programs and GUI-based user interfaces. For their projects and scientific research, students can learn how to write interactive programs, publish MATLAB code as standalone applications.</li> </ul>                                                                 |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | <ul> <li>develop user-friendly interfaces.</li> <li>7- Problem-solving abilities are a common topic of MATLAB study programs. Students are encouraged to use their MATLAB and programming expertise to address real-world issues, developing their analytical and critical thinking skills.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |
|                             | MATLAB is a popular programming language and tool. It has many uses,<br>including biology, engineering, economics, mathematics, data analysis, and<br>complex mathematical equations. As a result, MATLAB learning objectives in<br>undergraduate curricula can change based on the course and level of the<br>student. In academic programs, MATLAB often produces the following<br>learning outcomes:                                                                                                                                                                                                                                                                    |
| Module Learning<br>Outcomes | <ol> <li>Understanding and Application of Programming Concepts: Students<br/>learn the basic structure of the MATLAB programming language,<br/>including variables, loops, functions, and conditional statements. They<br/>also learn how to write efficient and effective code using best<br/>programming practices.</li> <li>Data analysis and visualization using equation solving, engineering<br/>diagrams, and visualization are all possible with MATLAB. Students<br/>gain knowledge of how to use MATLAB functions to import, modify,<br/>and analyze data. In order to visualize outcomes, they also learn how<br/>to make plots, charts, and graphs.</li> </ol> |
|                             | <ul> <li>3- Modeling and Simulation: MATLAB is often used to model and simulate complex systems in engineering, physics, applied science, and other scientific fields. Students learn how to create mathematical models and simulations using MATLAB functions and tools.</li> <li>4- Solve complex problems: MATLAB is a useful tool for solving complex problems in many fields. Students learn how to use MATLAB to solve problems related to optimization, numerical analysis, and differential and integral equations in advanced mathematics.</li> </ul>                                                                                                             |
|                             | disciplines, including engineering, physics, biology, economics, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                     | mathematics. Students gain knowledge of how to use MATLAB to           |
|---------------------|------------------------------------------------------------------------|
|                     | tackle issues in their particular fields of study.                     |
|                     | 6- Programming for scientific computing: MATLAB is often used in       |
|                     | scientific computing, where efficient and accurate numerical           |
|                     | calculations are required. Students learn how to code scientific       |
|                     | computing applications using MATLAB's built-in functions and tools     |
|                     | to analyze their data.                                                 |
|                     | 7- Algorithm development: MATLAB is a useful tool for developing and   |
|                     | testing algorithms. Students learn how to develop and test algorithms  |
|                     | for various applications using MATLAB                                  |
|                     | Processing: MATLAD.                                                    |
|                     | 6- Digital image and Signal Flocessing. MATLAD contains built-in       |
|                     | runctions for processing digital images and signals, which makes it a  |
|                     | popular tool in these fields. Students learn now to use MAILAB to      |
|                     | analyze and process images and digital signal processors.              |
|                     | 9- Machine Learning and Data Science: MATLAB has a variety of tools    |
|                     | for machine learning and data science applications, including neural   |
|                     | networks, classification algorithms, and data visualization tools.     |
|                     | Students learn how to use these tools to solve problems and analyze    |
|                     | data in machine learning.                                              |
|                     | 10- Communication and Collaboration: MATLAB is frequently used in      |
|                     | joint research projects where a large number of researchers contribute |
|                     | to the same code base. The built-in version control and code sharing   |
|                     | facilities in MATLAB help students learn how to cooperate              |
|                     | productively. Additionally, they gain communication skills by using    |
|                     | MATLAB's visualization and simulation tools to present their           |
|                     | findings                                                               |
|                     | 11-Control Systems Design: When it comes to planning and assessing     |
|                     | control systems MATLAB is employed in control systems                  |
|                     | engineering. Students gain knowledge of how to utilize MATLAB to       |
|                     | simulate closed loop systems, create controllers, and assess system    |
|                     | stinutate closed-loop systems, create controllers, and assess system   |
|                     |                                                                        |
|                     | 12-Computational finance: MATLAB has built-in functions for financial  |
|                     | modeling and analysis, making it a popular tool in computational       |
|                     | finance. Students learn how to use MATLAB to model financial           |
|                     | markets, analyze financial data, and develop trading strategies.       |
|                     | 13- Numerical methods: MATLAB is a powerful tool for numerical         |
|                     | methods, such as solving differential equations, performing numerical  |
|                     | integration, and solving optimization problems. Students learn how to  |
|                     | use MATLAB to apply numerical methods to solve problems in their       |
|                     | respective fields of study.                                            |
| Indicative Contents | Indicative content includes the following.                             |
|                     | Part A -                                                               |
|                     |                                                                        |

| Introduction to MATLAB environment & MATLAB windows, MATLAB                   |
|-------------------------------------------------------------------------------|
| commands & elementary mathematical functions[12 hours]                        |
| Vectors and Matrices[14 hours]                                                |
| Solving basic algebraic equations & quadratic equations[14 hours]             |
| Create function in files – MATLAB Introduction to Plotting, Plotting multiple |
| plots & Plotting 3D <b>[14 hours]</b>                                         |
| Part B-                                                                       |
| For-end loops, While- end loops & If statement[14hrs]                         |
| Integration, differentiation and Fourier transform[12 hours]                  |
| Introduction to Simulink and Modeling equations in Simulink[14 hours]         |
| Modeling electrical cct. in Simulink, Modeling electronic and communication   |
| cct. in Simulink[14 hours]                                                    |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                  | Learning and teaching strategies are methods used to help learners acquire knowledge and skills, and for teachers to effectively deliver instruction. There                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Strategies                       | <ul> <li>are various types of learning and teaching strategies, including:</li> <li>1- Active learning entails involving students in tasks that demand their participation, critical thinking, and application of what they have learned. Group discussions, practical exercises, and problem-based learning are a few examples.</li> <li>2- Collaborative learning: This involves group work and collaboration among learners to achieve a common goal. Examples include group projects and peer learning.</li> <li>3- Inquiry-based learning: This involves encouraging learners to ask questions, explore topics, and find answers through research and experimentation. Examples and reports include scientific investigations and case studies.</li> <li>4- Direct instruction: This involves the teacher providing information to learners in a structured and organized manner. Examples include lectures, demonstrations, and tutorials.</li> <li>5- Differentiated instruction: This involves tailoring instruction to meet the needs of individual learners, based on their learning style, abilities, and interests.</li> <li>6- Technology-based resources instruction: This involves using technology tools and tools to enhance instruction and engage learners. Examples include online courses, interactive whiteboards, and educational apps.</li> <li>7- Effective teaching and learning strategies often involve a combination of these approaches, tailored to the needs of the learners and the content being taught.</li> </ul> |  |  |  |

| Student Workload (SWL)<br>The student's academic load is calculated for 15 weeks. |    |                                                           |     |
|-----------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester             | 33 | Structured SWL (h/w)<br>Regular weekly student load       | 2.2 |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester         | 42 | Unstructured SWL (h/w)<br>Irregular student load per week | 2.8 |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester     |    | 75                                                        |     |

| Module Evaluation                     |                                                   |        |                |            |               |  |
|---------------------------------------|---------------------------------------------------|--------|----------------|------------|---------------|--|
|                                       | Course material evaluation                        |        |                |            |               |  |
|                                       | Time/Nu Weight (Marks) Week Due Relevant Learning |        |                |            |               |  |
|                                       |                                                   | mber   | weight (warks) | Week Due   | Outcome       |  |
|                                       | Quizzes                                           | 2      | 10% (10)       | 5, 10      | LO #2, and 11 |  |
| Formative                             | Assignments                                       | 2      | 10% (10)       | 2, 12      | LO #4, and 7  |  |
| assessment                            | Projects / Lab.                                   | 1      | 10% (10)       | Continuous | All           |  |
|                                       | Report                                            | 1      | 10% (10)       | 13         | LO#8          |  |
| Summative                             | Midterm Exam                                      | 1 hour | 10% (10)       | 7          | LO #1-7       |  |
| assessment                            | Final Exam                                        | 3hr    | 50% (50)       | 16         | All           |  |
| Total assessment     100% (100 Marks) |                                                   |        |                |            |               |  |

| Delivery Plan (Weekly Syllabus) |                                                         |
|---------------------------------|---------------------------------------------------------|
|                                 | Material Covered                                        |
| Week 1                          | Introduction to MATLAB environment & MATLAB windows     |
| Week 2                          | MATLAB commands & elementary mathematical functions     |
| Week 3                          | Vectors and Matrices                                    |
| Week 4                          | Matrices                                                |
| Week 5                          | Solving basic algebraic equations & quadratic equations |

| Week 6  | Create function in files - MATLAB                               |
|---------|-----------------------------------------------------------------|
| Week 7  | Introduction to Plotting, Plotting multiple plots & Plotting 3D |
| Week 8  | Operational & logical statements                                |
| Week 9  | For-end loops & While-end loops                                 |
| Week 10 | If statement                                                    |
| Week 11 | Integration & differentiation                                   |
| Week 12 | Fourier transform                                               |
| Week 13 | Introduction to Simulink                                        |
| Week 14 | Modeling equations in Simulink                                  |
| Week 15 | Modeling electrical cct. in Simulink                            |
| Week 16 | Modeling electronic cct. in Simulink                            |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                 |  |
|--------------------------------------|-----------------------------------------------------------------|--|
| Weekly lab schedule                  |                                                                 |  |
|                                      | Material Covered                                                |  |
| Week 1                               | Introduction to MATLAB environment                              |  |
| Week 2                               | MATLAB windows                                                  |  |
| Week 3                               | MATLAB commands & elementary mathematical functions             |  |
| Week 4                               | Vectors                                                         |  |
| Week 5                               | Matrices                                                        |  |
| Week 6                               | Solving basic algebraic equations &quadratic equations          |  |
| Week 7                               | Create function in files - MATLAB                               |  |
| Week 8                               | Introduction to Plotting, Plotting multiple plots & Plotting 3D |  |
| Week 9                               | Operational & logical statements                                |  |
| Week 10                              | For-end loops & While-end loops                                 |  |
| Week 11                              | If statement                                                    |  |
| Week 12                              | Integration & differentiation                                   |  |
| Week 13                              | Fourier transform                                               |  |
| Week 14                              | Introduction to Simulink and Modeling equations in Simulink     |  |
| Week 15                              | Modeling electrical cct. in Simulink                            |  |

| Week 16 | Modeling electronic cct in Simulink |
|---------|-------------------------------------|
|---------|-------------------------------------|

| Learning and Teaching Resources |                                                                   |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------|--|--|--|--|
|                                 | Available in the<br>Library?                                      |  |  |  |  |
| Required Texts                  | MATLAB An Introduction with Applications.                         |  |  |  |  |
| Recommended<br>Texts            | An Introduction to Programming and Numerical<br>Methods in MATLAB |  |  |  |  |
| Websites                        | https://www.mathworks.com                                         |  |  |  |  |

| Module 23<br>Subject information |                 |         |                               |                                                       |              |            |
|----------------------------------|-----------------|---------|-------------------------------|-------------------------------------------------------|--------------|------------|
| Module Title                     | Arabic Language |         |                               | Modu                                                  | ıle Delivery |            |
| Module Type                      |                 | Basic   |                               | ⊠Theory                                               |              |            |
| Module Code                      |                 | NTU 203 |                               | □Lecture                                              |              |            |
| ECTS Credits                     |                 | 3       |                               |                                                       | □Lab         |            |
|                                  |                 |         |                               |                                                       | □ Tutorial   |            |
| SWL (hr/sem)                     |                 | 50      | 50                            |                                                       | □Practical   |            |
|                                  |                 |         |                               | □Seminar                                              |              |            |
| Module Level                     | 2               |         | Sem                           | Semester of Delivery                                  |              | 4          |
| Administering De                 | epartment       | RETE    | College                       | College of Oil & Gas Techniques<br>Engineering/Kirkuk |              | Techniques |
| Module Leader                    |                 |         | e-mail                        |                                                       |              |            |
| Module Leader's                  | Acad. Title     |         | Module Leader's Qualification |                                                       |              |            |
| Module Tutor                     | Module Tutor    |         | e-mail                        |                                                       |              |            |
| Peer Reviewer Name               |                 | e-mail  |                               |                                                       |              |            |
| Scientific Commi<br>Date         | ttee Approval   |         | Version Nu                    | imber                                                 | 1.0          |            |

| Relation with other Modules |      |          |  |  |  |
|-----------------------------|------|----------|--|--|--|
| Prerequisite module         | None | Semester |  |  |  |
| Co-requisites module        | None | Semester |  |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                              |  |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Cours                                                  | Course objectives, learning outcomes and guiding content                                                                                                     |  |  |  |  |  |  |
|                                                        | 1. Enhance Effective Communication: Learning Arabic aims to enable students                                                                                  |  |  |  |  |  |  |
|                                                        | to communicate effectively in the Arabic environment, whether in daily life or                                                                               |  |  |  |  |  |  |
|                                                        | in academic and practical contexts.                                                                                                                          |  |  |  |  |  |  |
|                                                        | understanding Arabic Culture and its values, and helps Students To learn about                                                                               |  |  |  |  |  |  |
| iviodule Alms                                          | the rich Arab heritage and understand the multiculturalism of the Arab world.                                                                                |  |  |  |  |  |  |
|                                                        | 3. Enhance Research and academic capabilities: Learning Arabic contributes to                                                                                |  |  |  |  |  |  |
|                                                        | developing research skills. And writing Academic for students, enabling them<br>to participate effectively in academic discussions. And production Knowledge |  |  |  |  |  |  |
|                                                        | <ul><li>4. to provide Job Opportunities: Proficiency in the Arabic language is a valuable</li></ul>                                                          |  |  |  |  |  |  |
|                                                        | skill in the job market, as it can For students Working in various fields such                                                                               |  |  |  |  |  |  |
|                                                        | as translation, media, public relations, and education.                                                                                                      |  |  |  |  |  |  |
|                                                        | 1. ability on communication Effective: Acquire Students skills Listening And                                                                                 |  |  |  |  |  |  |
|                                                        | communication Fluently And understand Content In a way correct.                                                                                              |  |  |  |  |  |  |
|                                                        | 2. ability on to understand Texts And culture: Learn Students reading And                                                                                    |  |  |  |  |  |  |
| Module Learning                                        | understand Texts Literary And cultural In Arabic, Which Contributes in                                                                                       |  |  |  |  |  |  |
| Outcomes                                               | development understand them For heritage Arabic And analysis Cash For                                                                                        |  |  |  |  |  |  |
|                                                        | business Literary.                                                                                                                                           |  |  |  |  |  |  |
|                                                        | Research And writing Academy in language Arabic, And they can from                                                                                           |  |  |  |  |  |  |
|                                                        | presentation papers Research And reports Academy In a way distinct.                                                                                          |  |  |  |  |  |  |
|                                                        | 4. Interaction Cultural And social: Can Students from Participation in the                                                                                   |  |  |  |  |  |  |
|                                                        | society Arabic In a way Deeper and understanding Traditions and values And                                                                                   |  |  |  |  |  |  |
|                                                        | Peaceful.                                                                                                                                                    |  |  |  |  |  |  |
|                                                        | 1. introduction in Contents Indicative: Identification Contents Indicative And its                                                                           |  |  |  |  |  |  |
| Indiantivo Contonto                                    | importance, And its role in Fields and specializations Miscellaneous.                                                                                        |  |  |  |  |  |  |
| indicative Contents                                    | 2. Types And formulas Contents Indicative: Exploration various Types And                                                                                     |  |  |  |  |  |  |
|                                                        | Tormulas Contents Indicative, like tables and fees The statement And points<br>Prominent And summaries                                                       |  |  |  |  |  |  |
|                                                        | 3. construction Contents Indicative: Techniques and strategies construction                                                                                  |  |  |  |  |  |  |
|                                                        | Contents Indicative effective, With what In that to choose Information Home,                                                                                 |  |  |  |  |  |  |

|    | And simplify Concepts complex, And organizing Content For ease             |
|----|----------------------------------------------------------------------------|
|    | Understanding.                                                             |
| 4. | representation Visual For contents Indicative: Use Media Visual, like Fees |
|    | Charts and diagrams and drawings, To submit Contents Indicative In a way   |
|    | attractive And useful Visually.                                            |
| 5. | Examples And studies the condition: Analysis Examples And studies          |
|    | condition Real To understand How to Use Reference Content in Contexts      |
|    | different, like Reports Research And materials Marketing and resources     |
|    | Educational.                                                               |
|    | 4.<br>5.                                                                   |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | <ol> <li>Interactive Language Activities: Engaging students in interactive activities<br/>such as role-plays, group discussions, and language games to practice and<br/>reinforce language skills.</li> <li>Communicative Approach: Emphasizing real-life communication and providing<br/>opportunities for students to actively engage in speaking, listening, reading,<br/>and writing tasks to develop their language proficiency.</li> <li>Authentic Materials: Incorporating authentic materials such as newspaper<br/>articles, songs, videos, and literature to expose students to real-world<br/>language usage and cultural contexts</li> </ol> |  |  |  |

| Student Workload (SWL)                                                        |    |                                                           |      |  |  |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|------|--|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester         | 33 | Structured SWL (h/w)<br>Regular weekly student load       | 2.2  |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 17 | Unstructured SWL (h/w)<br>Irregular student load per week | 1.13 |  |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester |    | 50                                                        |      |  |  |

| Module Evaluation |                 |                |          |                              |  |
|-------------------|-----------------|----------------|----------|------------------------------|--|
|                   | Time/Nu<br>mber | Weight (Marks) | Week Due | Relevant Learning<br>Outcome |  |

|               | Quizzes                                                                                                                                                                      | 4                             | 15% (10)                                                | 2, 5, 10,12                          | LO #3, #6, #8, and #13          |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------|--------------------------------------|---------------------------------|--|
| Formative     | Assignments                                                                                                                                                                  | 3                             | 15% (10)                                                | 2, 7,12                              | LO #3, #5,and #7                |  |
| assessment    |                                                                                                                                                                              |                               |                                                         |                                      |                                 |  |
|               | Report                                                                                                                                                                       | 10                            | 10% (10)                                                | Continuous                           | All                             |  |
| Summative     | Midterm Exam                                                                                                                                                                 | 1 hour                        | 10% (10)                                                | 7                                    | LO #1-7                         |  |
| assessment    | Final Exam                                                                                                                                                                   | 3hr                           | 50% (50)                                                | 16                                   | All                             |  |
| Total assessr | nent                                                                                                                                                                         |                               | 100% (100 Marks)                                        |                                      |                                 |  |
|               |                                                                                                                                                                              | Delivery                      | Plan (Weekly Syllal                                     | bus)                                 |                                 |  |
|               |                                                                                                                                                                              |                               | Material Covered                                        | 1                                    |                                 |  |
|               |                                                                                                                                                                              |                               |                                                         |                                      |                                 |  |
| Week 1        | Introduction to Lang                                                                                                                                                         | guage Error                   | S                                                       |                                      |                                 |  |
| Week 2        | Taa Marbuta and Taa Marbuta (Bound and Open Taa): Understanding the rules and usage of the Taa Marbuta and Open Taa in Arabic language.                                      |                               |                                                         |                                      |                                 |  |
| Week 3        | Hamzat Al-Wasl and Al-Qat' (Hamza of Connection and Hamza of Disconnection): Differentiating between Hamzat Al-Wasl and Al-Qat' and their respective roles in pronunciation. |                               |                                                         |                                      |                                 |  |
| Week 4        | Alif Al-Maddooda and Alif Al-Muqassara Writing Rules: Exploring the rules for writing Alif Al-Maddooda (elongated Alif) and Alif Al-Muqassara (shortened Alif).              |                               |                                                         |                                      |                                 |  |
| Week 5        | Solar and Lunar Lette pronunciation.                                                                                                                                         | rs: Identifyir                | ng the distinction between                              | solar and lunar                      | letters in Arabic               |  |
| Week 6        | Adad (Numbers): Lea                                                                                                                                                          | rning about (                 | the numerical system in A                               | arabic and its usa                   | ige.                            |  |
| Week 7        | Verbs: Understanding                                                                                                                                                         | verb conjug                   | ation and the different ve                              | rb forms in Arab                     | vic.                            |  |
| Week 8        | Parts of Speech: Expl etc.                                                                                                                                                   | oring the diff                | ferent parts of speech, inc                             | luding nouns, ve                     | rbs, adjectives, adverbs,       |  |
| Week 9        | Meanings of Prepos                                                                                                                                                           | itions: Exar                  | nining the meanings an                                  | d usage of prep                      | ositions in Arabic.             |  |
| Week 10       | Common Language practical contexts.                                                                                                                                          | Errors: Ana                   | alyzing common langua                                   | ige errors and th                    | heir applications in            |  |
| Week 11       | Noon and Tanween: U                                                                                                                                                          | Jnderstandin                  | g the usage and pronuncia                               | ation of Noon an                     | d Tanween in Arabic.            |  |
| Week 12       | Taa Marbuta and Taa<br>Marbuta and Open Ta                                                                                                                                   | Marbuta (Bo<br>a in Arabic 1  | ound and Open Taa): Und anguage.                        | erstanding the ru                    | lles and usage of the Taa       |  |
| Week 13       | Hamzat Al-Wasl and<br>between Hamzat Al-V                                                                                                                                    | Al-Qat' (Han<br>Vasl and Al-( | nza of Connection and Ha<br>Qat' and their respective r | amza of Disconn<br>oles in pronuncia | ection): Differentiating ation. |  |
| Week 14       | Alif Al-Maddooda and Alif Al-Muqassara Writing Rules: Exploring the rules for writing Alif Al-<br>Maddooda (elongated Alif) and Alif Al-Muqassara (shortened Alif).          |                               |                                                         |                                      |                                 |  |

| Week 15 | Solar and Lunar Letters: Identifying the distinction between solar and lunar letters in Arabic pronunciation. |
|---------|---------------------------------------------------------------------------------------------------------------|
| Week 16 | Final Exam                                                                                                    |

| Learning and Teaching Resources |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
|                                 | Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |
| Required Texts                  | <ol> <li>Enough Al-Kindi: It is considered one of the most<br/>important books in grammar, as it explains Rules<br/>Grammatical structures in a simplified and<br/>comprehensive style.</li> <li>Exchange By Ibn Malik: A famous book that deals with<br/>the rules of conjugation. Actions And the names in the<br/>Arabic language, and it is considered one of the works<br/>of grammar</li> <li>Classic.</li> <li>Joint In the Science of Arabic" by Ibn Jinni: A<br/>comprehensive book covering a group Wide From the<br/>topics of grammar, morphology, rhetoric and literature</li> </ol> | Yes |  |  |
| Recommended Texts               | <ol> <li>Millennium By Ibn Malik: A famous book on grammar<br/>and morphology, considered from The most important<br/>classical references in the study of the Arabic language.</li> <li>The Extremist In Every Charming Art by Ibn Al-Anbari:<br/>A comprehensive book Many Of the Arabic words and<br/>expressions used in literature and poetry.</li> <li>Statement Al-Tabyeen by Ibn Hajar al-Asqalani: A book<br/>that deals with topics Grammar Morphology and rhetoric,<br/>and is considered a valuable reference in the study of<br/>language.</li> </ol>                                | No  |  |  |
| Websites                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |

## Level 3

| Module24<br>Subject information       |                                                |                 |                      |                                   |                                       |     |  |
|---------------------------------------|------------------------------------------------|-----------------|----------------------|-----------------------------------|---------------------------------------|-----|--|
| Module Title                          | Conduction & Radiation Heat           Transfer |                 |                      | Modu                              | ıle Delivery                          |     |  |
| Module Type                           |                                                | Core            |                      |                                   | ⊠Theory                               |     |  |
| Module Code                           |                                                | <b>RETE 300</b> |                      |                                   | □Lecture                              |     |  |
| ECTS Credits                          | 7                                              |                 |                      |                                   | ⊠Lab                                  |     |  |
| SWL (hr/sem)                          | 175                                            |                 |                      |                                   | ☐ ⊠Tutorial<br>□Practical<br>□Seminar |     |  |
| Module Level                          |                                                | UGx11 3         | Semester of Delivery |                                   | 5                                     |     |  |
| Administering De                      | epartment                                      | Type Dept. Code | College              | Technic                           | Technical Eng. College/ Kirkuk        |     |  |
| Module Leader                         |                                                |                 | e-mail               | <u>@ntu.e</u>                     | @ntu.edu.iq                           |     |  |
| Module Leader's                       | Acad. Title                                    | Professor       | Module Le            | Module Leader's Qualification MSc |                                       | MSc |  |
| Module Tutor                          | Module Tutor Name (if available)               |                 | e-mail               | Email                             | Email                                 |     |  |
| Peer Reviewer Name                    |                                                |                 | e-mail               | @ntu.edu.iq                       |                                       |     |  |
| Scientific Committee Approval<br>Date |                                                | 06/01/2023      | Version Nu           | Version Number 1.0                |                                       |     |  |

| Relation with other Modules |      |          |  |  |  |
|-----------------------------|------|----------|--|--|--|
| Prerequisite module         | None | Semester |  |  |  |
| Co-requisites module        | None | Semester |  |  |  |

| Modu                | le Aims, Learning Outcomes and Indicative Contents                                                                                                                                                                                                                               |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                     | <ol> <li>To develop problem solving skills and understanding of heat transfer through<br/>the application of techniques.</li> </ol>                                                                                                                                              |  |  |  |  |  |
|                     | 2. To understand the principle of heat transfer                                                                                                                                                                                                                                  |  |  |  |  |  |
|                     | <ol> <li>This course deals with the basic concept of conduction and radiation heat<br/>transfer.</li> </ol>                                                                                                                                                                      |  |  |  |  |  |
| Module Objectives   | 4. This is the basic subject for all conduction and radiation heat transfer                                                                                                                                                                                                      |  |  |  |  |  |
|                     | <ol> <li>To understand the conduction heat transfer laws includes the one-<br/>dimensional steady state (cartesian, cylindrical, and spherical coordinates),<br/>the two-dimensional steady state (numerical solution), and the unsteady<br/>state (lumped analysis).</li> </ol> |  |  |  |  |  |
|                     | <ol> <li>To understand the laws of radiation heat transfer, including properties,<br/>emissivity, shape factor, and heat exchange between non-black bodies.</li> </ol>                                                                                                           |  |  |  |  |  |
|                     | Important: Write at least 6 Learning Outcomes, better to be equal to the number of study weeks.                                                                                                                                                                                  |  |  |  |  |  |
|                     | 1. Recognize the conduction heat transfer parameters.                                                                                                                                                                                                                            |  |  |  |  |  |
|                     | 2. Derived thermal conduction resistance for cartesian, cylindrical, and spherical geometries, and they represented with Ohm's law                                                                                                                                               |  |  |  |  |  |
| Module Learning     | <ol> <li>Recognize the use of numerical analysis techniques to solve two-dimensional<br/>heat conduction problems.</li> </ol>                                                                                                                                                    |  |  |  |  |  |
|                     | 4. Describe thermal resistance and overall heat transfer coefficient.                                                                                                                                                                                                            |  |  |  |  |  |
|                     | 5. Discuss the unsteady state conduction heat transfer                                                                                                                                                                                                                           |  |  |  |  |  |
|                     | 6. Discuss important points in the conduction heat transfer part.                                                                                                                                                                                                                |  |  |  |  |  |
|                     | 7. Identify the principle of radiation heat transfer.                                                                                                                                                                                                                            |  |  |  |  |  |
|                     | 8. Define Kirchhoff's identity, shape factors                                                                                                                                                                                                                                    |  |  |  |  |  |
|                     | 9. Heat exchange between non-black bodies.                                                                                                                                                                                                                                       |  |  |  |  |  |
|                     | 10. Representing black and non-black bodies' heat exchange by electrical circuits.                                                                                                                                                                                               |  |  |  |  |  |
| Indicative Contents | Indicative content includes the following.                                                                                                                                                                                                                                       |  |  |  |  |  |
|                     | Part A – Conduction heat transfer                                                                                                                                                                                                                                                |  |  |  |  |  |

| Introduction to heat transfer, one-dimensional steady state heat transfer, overall heat transfer coefficient. [20 hrs] |
|------------------------------------------------------------------------------------------------------------------------|
| Heat source systems, fins theory. [15 hrs]                                                                             |
| Two-dimensional steady state conduction heat transfer. [10 hrs]                                                        |
| Unsteady state heat transfer [5 hrs]                                                                                   |
| Part B- Radiation heat transfer                                                                                        |
| Introduction to Radiation heat transfer, basic concept, radiation properties, shape factors. [10 hrs]                  |
| Heat exchanger between black bodies surface, heat exchange between non-black bodies surface [10 hrs].                  |
| Radiation heat exchange between parallel plate shield [5 hrs}                                                          |
| Final examination [2 hrs Lab. Section and 3 hrs theory section]                                                        |
| Revision problem classes [6 hrs]                                                                                       |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | The primary strategy for delivering this module is to encourage students' participation<br>in solving the exercises while at the same time developing their critical thinking skills.<br>This will be accomplished through classes, interactive tutorials, and simple<br>experiments involving enjoyable sampling activities for students. |  |  |  |

| Student Workload (SWL)<br>The student's academic load is calculated for 15 weeks. |    |                                                           |      |  |  |
|-----------------------------------------------------------------------------------|----|-----------------------------------------------------------|------|--|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester             | 93 | Structured SWL (h/w)<br>Regular weekly student load       | 6.2  |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester         | 82 | Unstructured SWL (h/w)<br>Irregular student load per week | 5.46 |  |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester     |    | 175                                                       |      |  |  |

| Module Evaluation |                |             |                  |            |                              |
|-------------------|----------------|-------------|------------------|------------|------------------------------|
|                   |                | Time/Number | Weight (Marks)   | Week Due   | Relevant Learning<br>Outcome |
|                   | Quizzes        | 5           | 10% (10)         | 5 and 10   | LO #1, #2 and #10, #11       |
| Formative         | Assignments    | 5           | 10% (10)         | 2 and 12   | LO #3, #4 and #6, #7         |
| assessment        | Projects /Lab. | 6           | 10% (10)         | Continuous | All                          |
|                   | Report         | 6           | 10% (10)         | 13         | LO #5, #8 and #10            |
| Summative         | Midterm Exam   | 2hr         | 10% (10)         | 7          | LO #1 - #7                   |
| assessment        | Final Exam     | 3hr         | 50% (50)         | 16         | All                          |
| Total assessment  |                |             | 100% (100 Marks) |            |                              |

|              | Delivery Plan (Weekly Syllabus)                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Material Covered                                                                                                                                                     |
| Week 1       | An introduction to the basic principles of heat transfer and methods of heat transfer                                                                                |
| Week 2 & 3   | Heat transfer by conduction in the steady state and one-dimensional in shapes (Cartesian, cylindrical, spherical) compound walls, compound cylinders, compound balls |
| Week 4       | Overall heat transfer coefficient, critical thickness of insulating material, thermal contact resistance                                                             |
| Week 5       | Heat source systems in walls and cylinders                                                                                                                           |
| Week 6 & 7   | Types of fins, fin design, fin efficiency, fin efficiency, heat transfer from heat sinks                                                                             |
| Week 8 & 9   | Two-dimensional steady state conduction heat transfer (Numerical solution)                                                                                           |
| Week 10      | Unsteady state heat transfer (Lumped heat capacity system)                                                                                                           |
| Week 11 & 12 | Introduction to heat by radiation, basic concepts, properties of radiation, shape factors                                                                            |
| Week 13 & 14 | Radiation Heat exchange between the surface of black objects and between the surface of non-<br>black bodies                                                         |
| Week 15      | Radiation heat exchange between parallel-plate shield                                                                                                                |
| Week 16      | Preparatory week before the final exam                                                                                                                               |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                                                                          |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                      | Material Covered                                                                                                         |  |  |  |
| Week 1                               | Lab 1: Recognize heat transfer lab apparatuses, and learn how the report is written                                      |  |  |  |
| Week 2                               | Lab 2: The heat transfer rate is directly proportional to the temperature difference between the two ends of the sample. |  |  |  |
| Week 3                               | Lab 3: The heat transfer rate is inversely proportional to the cross-sectional area.                                     |  |  |  |
| Week 4                               | Lab 4: Thermal contact resistance                                                                                        |  |  |  |

| Week 5 | Lab 5: Determine the unknown material's thermal conductivity |
|--------|--------------------------------------------------------------|
| Week 6 | Lab 6: Materials emissivity evaluation                       |
| Week 7 | Lab 7: Stefan-Boltzmann experiment                           |

| Learning and Teaching Resources |                                                                              |                           |  |  |  |
|---------------------------------|------------------------------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                                         | Available in the Library? |  |  |  |
| Required Texts                  | Heat transfer, J.P. Holman, 13rd Edition, Mc Graw Hill companies, Inc., 1221 | Yes                       |  |  |  |
| Recommended<br>Texts            | Heat transfer; A practical approach, Yunus A. Cengel, 2nd addition,          | Yes                       |  |  |  |
| Websites                        |                                                                              |                           |  |  |  |

| Module25<br>Subject information             |                         |            |                      |                           |              |  |
|---------------------------------------------|-------------------------|------------|----------------------|---------------------------|--------------|--|
| Module Title                                | Engineering Analysis    |            | Module Delivery      |                           |              |  |
| Module Type                                 |                         | Core       |                      | ⊠Theory                   |              |  |
| Module Code                                 |                         | COGTEK 300 |                      | □Lecture                  |              |  |
| ECTS Credits                                | 6                       |            | □Lab                 |                           |              |  |
|                                             |                         |            |                      | ⊠Tutorial                 |              |  |
| SWL (hr/sem)                                | 150                     |            |                      | □ Practical               |              |  |
|                                             |                         |            |                      | □Seminar                  |              |  |
| Module Level                                |                         | 3          | Semester o           | Delivery 5                |              |  |
| Administering De                            | Department RETE         |            | College              | Oil and gas technical col | lege/ Kirkuk |  |
| Module Leader e-                            |                         | e-mail     |                      |                           |              |  |
| Module Leader's Acad. Title Assist. Lecture |                         | Module Lea | ader's Qualification | MSc                       |              |  |
| Module Tutor                                | Ali Qani Mohammed Saleh |            | e-mail               | ali.alkurdi23@ntu.edu.iq  |              |  |

| Peer Reviewer Name                    | Name       | e-mail     | Email |     |
|---------------------------------------|------------|------------|-------|-----|
| Scientific Committee Approval<br>Date | 06/01/2023 | Version Nu | mber  | 1.0 |

| Relation with other Modules |      |          |  |  |
|-----------------------------|------|----------|--|--|
| Prerequisite module         | None | Semester |  |  |
| Co-requisites module        | None | Semester |  |  |

| Modu                        | le Aims, Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                             | 1. Develop a solid foundation in mathematical concepts and techniques used in engineering analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                             | 2. Understand the principles and applications of numerical methods for solving engineering problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Module Objectives           | 3. Gain proficiency in using software tools and programming languages for numerical analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                             | 4. Acquire the skills to analyze and interpret numerical results to make informed engineering decisions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                             | 5. Apply mathematical modeling techniques to solve real-world engineering problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Module Learning<br>Outcomes | <ul> <li>The subject intended specific learning outcomes. On successfully completing the module students will be able to:</li> <li>1- Acquire a comprehensive understanding of the fundamental principles and concepts underlying a broad range of basic methods used in engineering analysis.</li> </ul>                                                                                                                                                                                                                                                                    |  |  |  |
|                             | <ol> <li>Demonstrate proficiency in applying a variety of established techniques and<br/>effectively utilizing computational tools to solve engineering problems.</li> <li>Apply the acquired knowledge and skills in basic numerical approximation to<br/>address complex problems in diverse contexts, demonstrating the ability to<br/>critically assess and select appropriate tools and techniques.</li> <li>Effectively employ MATLAB commands and functions to implement and<br/>execute engineering analysis tasks, demonstrating competence in utilizing</li> </ol> |  |  |  |

|                     | computational tools for problem-solving.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicative Contents | <ul> <li>Part A</li> <li>1- Introduction, Mathematical Analysis, Function Analysis and Complex Function<br/>Analysis [20 hr.]</li> <li>2- Mathematical Modeling, Logistic Regression Analysis, Probability and Statistics<br/>Analysis and Advanced Probability and Statistics Analysis [20 hr.]</li> <li>3- Revision problem classes and quiz [3 hrs]<br/>Part B</li> <li>4- Linear and Nonlinear Regression Analysis, Optimization Analysis and Optimal<br/>Control and Nonlinear Continuation Analysis [20 hr.]</li> </ul> |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | <ol> <li>Establish a solid foundation: Start by thoroughly understanding the fundamental concepts and principles of engineering analysis. This includes understanding the mathematical techniques and numerical methods commonly used in the field.</li> <li>Practice problem-solving: Engineering analysis involves solving complex problems. Regularly practice solving a variety of problems to enhance your problem-solving skills and develop a deeper understanding of the subject matter.</li> <li>Utilize resources: Take advantage of textbooks, online resources, and reference materials specific to engineering analysis. These resources can provide additional explanations, examples, and practice problems to reinforce your understanding.</li> </ol> |  |  |  |

| Student Workload (SWL)                                                    |    |                                                           |     |  |  |
|---------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|--|--|
| The student's academic load is calculated for 15 weeks.                   |    |                                                           |     |  |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester     | 63 | Structured SWL (h/w)<br>Regular weekly student load       | 4.2 |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester | 87 | Unstructured SWL (h/w)<br>Irregular student load per week | 5.8 |  |  |
| Total SWL (h/sem) 150                                                     |    |                                                           |     |  |  |

| The student's total academic load |  |
|-----------------------------------|--|
| during the semester               |  |

| Module Evaluation       |                |             |                  |            |                              |
|-------------------------|----------------|-------------|------------------|------------|------------------------------|
|                         |                | Time/Number | Weight (Marks)   | Week Due   | Relevant Learning<br>Outcome |
|                         | Quizzes        | 2           | 10% (10)         | 5 and 10   | 1, 2 and 3                   |
| Formative<br>assessment | Assignments    | 2           | 10% (10)         | 2 and 12   | 1, 2 and 3                   |
|                         | Projects /Lab. | 1           | 10% (10)         | Continuous | 1, 2 and 3                   |
|                         | Report         | 1           | 10% (10)         | 13         | 1, 2 and 3                   |
| Summative               | Midterm Exam   | 2hr         | 10% (10)         | 7          | 1, 2 and 3                   |
| assessment              | Final Exam     | 3hr         | 50% (50)         | 16         | 1, 2 and 3                   |
| Total assessment        |                |             | 100% (100 Marks) |            |                              |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                 |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                 | Material Covered                                                                                                                |  |  |
| Week 1                          | Introduction to Engineering Analysis; Fundamental concepts in engineering analysis Tools and techniques of engineering analysis |  |  |
| Week 2                          | Mathematical Analysis; Differential equations and their applications in engineering, differentiation and integration            |  |  |
| Week 3                          | Function Analysis; Algebraic and transcendental functions, trigonometric and exponential functions                              |  |  |
| Week 4                          | Complex Function Analysis; Complex numbers and operations, analysis of complex functions                                        |  |  |
| Week 5                          | Mathematical Modeling; Mathematical models of growth, Mathematical models of regression                                         |  |  |
| Week 6                          | Logistic Regression Analysis; Logistic regression analysis, Applications in engineering                                         |  |  |

| Wook 7  | Probability and Statistics Analysis; Probability and statistics concepts, data analysis and probability |
|---------|---------------------------------------------------------------------------------------------------------|
| WEEK /  | distributions                                                                                           |
|         |                                                                                                         |
| Week 8  | Advanced Probability and Statistics Analysis; Joint and conditional probability analysis, advanced      |
|         | statistics analysis and non-normal distributions                                                        |
| Week 9  | Linear Regression Analysis; Simple linear regression analysis, Multiple linear regression analysis      |
| Week 10 | Nonlinear Regression Analysis; Nonlinear regression analysis, Applications in engineering               |
| Wook 11 | Optimization Analysis and Optimal Control; Optimization analysis and optimal control problems,          |
| WEEK II | Applications in engineering                                                                             |
| Week 12 | Nonlinear Optimization Analysis; Nonlinear optimization analysis, Applications in engineering           |
| Week 13 | Review 1                                                                                                |
| Week 14 | Review 2                                                                                                |
| Week 15 | Review 3                                                                                                |
| Week 16 | Preparatory week before the final exam                                                                  |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                      |  |  |
|--------------------------------------|----------------------------------------------------------------------|--|--|
|                                      | Material Covered                                                     |  |  |
| Week 1                               | Lab 1: Introduction to Engineering Analysis and MATLAB.              |  |  |
| Week 2                               | Lab 2: Numerical Methods for Root Finding                            |  |  |
| Week 3                               | Lab 3: Interpolation and Curve Fitting                               |  |  |
| Week 4                               | Lab 4: Numerical Integration                                         |  |  |
| Week 5                               | Lab 5: Numerical Solutions of Ordinary Differential Equations (ODEs) |  |  |
| Week 6                               | Lab 6: Systems of Linear Equations                                   |  |  |
| Week 7                               | Lab 7: Partial Differential Equations (PDEs)                         |  |  |

| Learning and Teaching Resources |                                                                                                                                                                                                                                                              |                           |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                                                                                                                                                                                                                         | Available in the Library? |  |  |
| Required Texts                  | <ol> <li>"Numerical Methods for Engineers" by Steven C. Chapra<br/>and Raymond P. Canale</li> <li>"Numerical Analysis" by Timothy Sauer</li> <li>"Numerical Methods in Engineering with MATLAB" by<br/>Jaan Kiusalaas</li> </ol>                             | No                        |  |  |
| Recommended<br>Texts            | <ol> <li>"Applied Numerical Methods with MATLAB for Engineers<br/>and Scientists" by Steven C. Chapra</li> <li>"Numerical Methods: Design, Analysis, and Computer<br/>Implementation of Algorithms" by Anne Greenbaum and<br/>Timothy P. Chartier</li> </ol> | No                        |  |  |
| Websites                        | <ol> <li>3. (https://www.mathworks.com/)</li> <li>4. (http://www.numericalmethods.eng.usf.edu/)</li> <li>5. (https://www.engineering.com/)</li> </ol>                                                                                                        |                           |  |  |

| Module 26<br>Subject information      |                 |      |         |                    |                                            |  |
|---------------------------------------|-----------------|------|---------|--------------------|--------------------------------------------|--|
| Module Title Renewable Energy Systems |                 |      |         |                    |                                            |  |
| Module Type                           | Core            |      |         | ⊠Theory            |                                            |  |
| Module Code                           | <b>RETE 302</b> |      |         | □ Lecture<br>⊠ Lab |                                            |  |
| ECTS Credits                          | 6               |      |         |                    |                                            |  |
| SWL (hr/sem)                          | 150             |      |         | Seminar            |                                            |  |
| Module Level                          | 3 Semester of D |      |         | Delivery           | 5                                          |  |
| Administration Department             |                 | RETE | College | College o<br>Eng   | f Oil & Gas Techniques<br>gineering/Kirkuk |  |

| Module Leader                         | Ali Qani Mohammed<br>Saleh |                                  | e-mail            | ali.alkurdi23@ntu.edu.iq |  |
|---------------------------------------|----------------------------|----------------------------------|-------------------|--------------------------|--|
| Module Leader's Acad. Title Lecturer  |                            | Module Leader's<br>Qualification |                   | MSc.                     |  |
| Module Tutor                          | Name (if available)        |                                  | e-mail            |                          |  |
| Peer Reviewer Name                    |                            | e-mail                           |                   |                          |  |
| Scientific Committee Approval<br>Date |                            |                                  | Version<br>Number | 1                        |  |

| Relation with other Modules |          |          |      |  |
|-----------------------------|----------|----------|------|--|
| Prerequisite module         | RETE 207 | Semester | Four |  |
| Co-requisites module        | None     | Semester |      |  |

| Module Aims,                | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ol> <li>Comprehensive Understanding: The aim of this module is to provide<br/>students with a comprehensive understanding of various renewable<br/>energy systems, including solar, wind, hydropower, and biomass,<br/>enabling them to grasp the design, components, and operational<br/>principles of these systems.</li> <li>Technical Proficiency: This module aims to equip students with the<br/>technical knowledge and skills necessary to analyse, evaluate, and<br/>design renewable energy systems. By the end of the module, students<br/>should be proficient in assessing the technical feasibility and<br/>performance of these systems.</li> <li>Integration and Sustainability: Students will learn how to integrate<br/>renewable energy systems into the broader energy infrastructure and<br/>gain an appreciation for the role of these systems in achieving<br/>sustainability goals. They should be able to critically evaluate the<br/>environmental economic and second performance of some and second performance of these systems in achieving<br/>sustainability goals. They should be able to critically evaluate the<br/>environmental economic and second performance of some and second performance of the second performance of these systems in achieving<br/>sustainability goals. They should be able to critically evaluate the</li> </ol> |
|                             | technologies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Module Learning<br>Outcomes | <ul> <li>(LO1). In-Depth Knowledge: Students will acquire in-depth knowledge of various renewable energy systems, including solar photovoltaic, wind, hydropower, and biomass, and understand their principles, components, and applications.</li> <li>(LO2). Technical Analysis: By the end of the course, students should be able to analyze the technical aspects of renewable energy systems, including custom design energy environments.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | considerations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                     | (LO3). System Integration: Students will develop the skills to integrate    |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
|                     | renewable energy systems into existing energy infrastructures, including    |  |  |  |  |  |
|                     | grid integration, storage solutions, and backup systems.                    |  |  |  |  |  |
|                     | (LO4). Performance Assessment: Students will be capable of assessing        |  |  |  |  |  |
|                     | the performance and reliability of renewable energy systems, usi            |  |  |  |  |  |
|                     | performance indicators and data analysis to evaluate their efficiency.      |  |  |  |  |  |
|                     | (LO5). Environmental Impact Evaluation: Understanding the                   |  |  |  |  |  |
|                     | environmental implications of renewable energy technologies, students       |  |  |  |  |  |
|                     | will be able to assess their positive and negative environmental impacts,   |  |  |  |  |  |
|                     | contributing to more informed decision-making.                              |  |  |  |  |  |
|                     | (LO6). Economic Feasibility: Students will be able to conduct economic      |  |  |  |  |  |
|                     | assessments of renewable energy projects, considering factors such as       |  |  |  |  |  |
|                     | return on investment, cost-benefit analysis, and financial modeling.        |  |  |  |  |  |
|                     | (LO7). Policy and Regulatory Awareness: Students should gain an             |  |  |  |  |  |
|                     | understanding of the policy and regulatory frameworks related to            |  |  |  |  |  |
|                     | renewable energy, allowing them to navigate the legal and administrative    |  |  |  |  |  |
|                     | aspects of these technologies.                                              |  |  |  |  |  |
|                     | (LO8). Innovation and Future Trends: Students will be aware of current      |  |  |  |  |  |
|                     | innovations and emerging trends in renewable energy, preparing them         |  |  |  |  |  |
|                     | for a dynamic and evolving field as they consider future opportunities and  |  |  |  |  |  |
|                     | challenges.                                                                 |  |  |  |  |  |
|                     | Indicative content includes the following.                                  |  |  |  |  |  |
|                     | Introduction to Renewable Energy                                            |  |  |  |  |  |
|                     | <ul> <li>Definition and importance of renewable energy</li> </ul>           |  |  |  |  |  |
|                     | <ul> <li>Environmental and economic drivers for renewable energy</li> </ul> |  |  |  |  |  |
|                     | Solar Energy Systems                                                        |  |  |  |  |  |
|                     | <ul> <li>Solar photovoltaic (PV) technology</li> </ul>                      |  |  |  |  |  |
|                     | Solar thermal systems                                                       |  |  |  |  |  |
|                     | <ul> <li>Concentrated solar power (CSP)</li> </ul>                          |  |  |  |  |  |
|                     | Wind Energy Systems                                                         |  |  |  |  |  |
|                     | Wind turbine technology                                                     |  |  |  |  |  |
|                     | Wind resource assessment                                                    |  |  |  |  |  |
|                     | Offshore wind energy                                                        |  |  |  |  |  |
| Indicativo Contanto | Hydropower Systems                                                          |  |  |  |  |  |
| indicative contents | <ul> <li>Principles of hydropower generation</li> </ul>                     |  |  |  |  |  |
|                     | <ul> <li>Types of hydropower systems (dam, run-of-river, tidal)</li> </ul>  |  |  |  |  |  |
|                     | <ul> <li>Environmental and social considerations</li> </ul>                 |  |  |  |  |  |
|                     | Biomass Energy Systems                                                      |  |  |  |  |  |
|                     | <ul> <li>Types of biomass sources (wood, crops, waste)</li> </ul>           |  |  |  |  |  |
|                     | <ul> <li>Biomass conversion processes (biogas, biofuels)</li> </ul>         |  |  |  |  |  |
|                     | <ul> <li>Cogeneration and combined heat and power (CHP)</li> </ul>          |  |  |  |  |  |
|                     | Geothermal Energy Systems                                                   |  |  |  |  |  |
|                     | Geothermal heat pumps                                                       |  |  |  |  |  |
|                     | <ul> <li>Geothermal power plants (flash, binary, dry steam)</li> </ul>      |  |  |  |  |  |
|                     | Resource assessment and exploration                                         |  |  |  |  |  |
|                     | Integration and Grid Connection                                             |  |  |  |  |  |
|                     | 4                                                                           |  |  |  |  |  |
| <ul> <li>Energy storage systems (batteries, pumped storage, etc.)</li> </ul>        |
|-------------------------------------------------------------------------------------|
| <ul> <li>Backup power systems and grid stability</li> </ul>                         |
| <ul> <li>Energy Efficiency in Renewable Systems</li> </ul>                          |
| <ul> <li>Energy-efficient components and designs</li> </ul>                         |
| <ul> <li>Smart grids and demand-side management</li> </ul>                          |
| <ul> <li>Energy conservation measures</li> </ul>                                    |
| <ul> <li>Environmental Impact and Sustainability</li> </ul>                         |
| <ul> <li>Life cycle assessment of renewable energy systems</li> </ul>               |
| <ul> <li>Environmental benefits and challenges</li> </ul>                           |
| Sustainability Considerations                                                       |
| Economic Analysis and Financing                                                     |
| <ul> <li>Economic evaluation of renewable energy projects</li> </ul>                |
| <ul> <li>Financial modeling and cost-benefit analysis</li> </ul>                    |
| <ul> <li>Financing options and incentives</li> </ul>                                |
| Regulation and Policy Framework                                                     |
| <ul> <li>Regulatory challenges and incentives</li> </ul>                            |
| <ul> <li>Government policies and support mechanisms</li> </ul>                      |
| <ul> <li>International agreements and targets</li> </ul>                            |
| Emerging Technologies and Trends                                                    |
| <ul> <li>Exploration of cutting-edge renewable energy technologies</li> </ul>       |
| <ul> <li>Market trends, innovation, and future prospects</li> </ul>                 |
| <ul> <li>The role of research and development</li> </ul>                            |
| <ul> <li>Practical Applications and Case Studies</li> </ul>                         |
| <ul> <li>Real-world case studies of successful renewable energy projects</li> </ul> |
| <ul> <li>Hands-on experience with renewable energy systems</li> </ul>               |
| <ul> <li>Field trips and site visits (if applicable)</li> </ul>                     |
| <ul> <li>Group Projects and Student Presentations</li> </ul>                        |
| <ul> <li>Collaborative projects on renewable energy system design or</li> </ul>     |
| analysis                                                                            |
| <ul> <li>Student presentations and discussions</li> </ul>                           |
| Examinations and Assessment                                                         |
| <ul> <li>Final examinations or assessments</li> </ul>                               |
| <ul> <li>Evaluation of student understanding and application of course</li> </ul>   |
| content                                                                             |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Strategies                       | Teaching Method 1 - Lectures<br>Description:<br>Attendance Recorded: Yes<br>Teaching Method 2 - Asynchronous on-line course materials<br>Description: Podcasts, videos and articles in thermodynamics<br>Attendance Recorded: No |  |

| Unscheduled Directed Student Hours (time spent away from the timetabled sessions but directed by the teaching staff). |
|-----------------------------------------------------------------------------------------------------------------------|
| Teaching Method 3 - Tutorials<br>Description:                                                                         |
| Attendance Recorded: Yes                                                                                              |
| Teaching Method 4 - Practical                                                                                         |
| Description: Practical homework assignments                                                                           |
| Attendance Recorded: No                                                                                               |
| Unscheduled Directed Student Hours (time spent away from the timetabled                                               |
| sessions but directed by the teaching staff).                                                                         |

| Student Workload (SWL)                           |                          |                                 |     |  |  |
|--------------------------------------------------|--------------------------|---------------------------------|-----|--|--|
| Structured SWL (h/sem)                           | 62                       | Structured SWL (h/w)            | 1.2 |  |  |
| Regular student load during the semester         | 05                       | Regular weekly student load     | 4.2 |  |  |
| Unstructured SWL (h/sem)                         | Unstructured SWL (h/sem) |                                 | ΕQ  |  |  |
| Irregular student load during the semester       | 07                       | Irregular student load per week | 5.8 |  |  |
| Total SWL (h/sem)                                |                          |                                 |     |  |  |
| The student's total academic load during the 150 |                          |                                 |     |  |  |
| semester                                         |                          |                                 |     |  |  |

| Module Evaluation       |                 |             |                   |                      |                               |
|-------------------------|-----------------|-------------|-------------------|----------------------|-------------------------------|
|                         |                 | Time/Number | Weight<br>(Marks) | Week Due             | Relevant Learning<br>Outcome  |
|                         | Quizzes         | 5           | 10% (10)          | 3,5,7,9,11<br>and 15 | LO #2, #3,#5,#7,#9 and<br>#11 |
| Formative<br>assessment | Assignments     | 5           | 10% (10)          | 2,6,8 and<br>12      | LO #1, #4, #6and #10          |
|                         | Projects / Lab. | 4           | 20% (10)          | Continuous           | All                           |
|                         | Report          |             |                   |                      |                               |
| Summative               | Midterm Exam    | 2 hours     | 10%(10)           | 7                    | LO #1 - #5                    |
| assessment              | Final Exam      | 3 hours     | 50%(50)           | 16                   | All                           |
| Total assessment        |                 |             | 100% (100         |                      |                               |
|                         |                 |             | Marks)            |                      |                               |

| Delivery Plan (Weekly Syllabus) |                                                                                         |  |
|---------------------------------|-----------------------------------------------------------------------------------------|--|
| Wook 1                          | Introduction to Renewable Energy - Overview of the course, Importance of renewable      |  |
| VVEEK 1                         | energy, environmental and economic drivers                                              |  |
| Week2                           | Solar Energy Systems - Solar photovoltaic (PV) technology, Solar thermal systems, Solar |  |
|                                 | resource assessment                                                                     |  |
| Week3                           | Wind Energy Systems - Wind turbine technology, Wind resource assessment, Offshore       |  |
|                                 | wind energy                                                                             |  |

| Week4    | Hydropower Systems - Principles of hydropower generation, Types of hydropower          |
|----------|----------------------------------------------------------------------------------------|
| VVEEK4   | systems, Environmental and social considerations                                       |
| W/ookE   | Biomass Energy Systems - Types of biomass sources, Biomass conversion processes,       |
| WEEKS    | Cogeneration and combined heat and power (CHP)                                         |
| Week6    | Geothermal Energy Systems - Geothermal heat pumps, Geothermal power plants,            |
| WEEKO    | Resource assessment and exploration                                                    |
| Week7    | Integration and Grid Connection - Grid integration of renewable energy, energy storage |
| vveek7   | systems, Backup power systems and grid stability                                       |
| Week9    | Energy Efficiency in Renewable Systems - Energy-efficient components and designs,      |
| vveeko   | Smart grids and demand-side management, Energy conservation measures                   |
| Maak0    | Environmental Impact and Sustainability - Life cycle assessment of renewable energy    |
| Week9    | systems, Environmental benefits and challenges, Sustainability considerations          |
| Week 10  | Economic Analysis and Financing - Economic evaluation of renewable energy projects,    |
| Week 10  | Financial modeling and cost-benefit analysis, Financing options and incentives         |
| Week 11  | Regulation and Policy Framework - Regulatory challenges and incentives, Government     |
| Week II  | policies and support mechanisms, International agreements and targets                  |
| Week 12  | Emerging Technologies and Trends - Cutting-edge renewable energy technologies,         |
| VVeek 12 | Market trends, innovation, and future prospects, The role of research and development  |
|          | Practical Applications and Case Studies - Real-world case studies of successful        |
| Week 13  | renewable energy projects, Hands-on experience with renewable energy systems, Field    |
|          | trips and site visits (if applicable)                                                  |
| Week 14  | Group Projects and Student Presentations - Collaborative projects on renewable energy  |
| VVEEK 14 | system design or analysis, Student presentations and discussions                       |
| Wook 15  | Final Examinations and Assessment - Final examinations or assessments, Evaluation of   |
| VVEEK 15 | student understanding and application of course content                                |

| Learning and Teaching Resources |                                                                                                                             |                           |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                                                                                        | Available in the Library? |  |  |
| Required Texts                  | Renewable Energy: Technology, Economics, and<br>Environment by Martin Kaltschmitt, Wolfgang Streicher,<br>and Andreas Wiese | No                        |  |  |
| Recommended Texts               | Sustainable Energy: Choosing Among Options by Jefferson W. Tester, Elisabeth M. Drake, Michael J. Driscoll, et al.          | No                        |  |  |
|                                 | Renewable Energy: Power for a Sustainable Future by Godfrey Boyle                                                           | No                        |  |  |

| Module27            |                   |                 |  |
|---------------------|-------------------|-----------------|--|
| Subject information |                   |                 |  |
| Module Title        | Power electronics | Module Delivery |  |

| Module Type                                      | Core            |            |                        | ⊠Theory           |                                                       |       |
|--------------------------------------------------|-----------------|------------|------------------------|-------------------|-------------------------------------------------------|-------|
| Module Code                                      | <b>RETE 303</b> |            |                        |                   | □Lecture                                              |       |
| ECTS Credits                                     |                 | 5          |                        |                   | ⊠Lab                                                  |       |
|                                                  |                 |            |                        |                   | □Tutorial                                             |       |
| SWL (hr/sem)                                     |                 | 125        |                        |                   | □Practical                                            |       |
|                                                  |                 |            |                        |                   | □Seminar                                              |       |
| Module Level                                     | 3               |            | Semester of Delivery 5 |                   | 5                                                     |       |
| Administering D                                  | Department RETE |            | College                | College<br>Engine | College of Oil & Gas Techniques<br>Engineering/Kirkuk |       |
| Module Leader                                    |                 |            | e-mail                 |                   |                                                       |       |
| Module Leader's                                  | Acad. Title     |            | Module Le              | ader's Q          | Jualification                                         | M.Sc. |
| Module Tutor                                     | None            |            | e-mail                 | None              |                                                       |       |
| Peer Reviewer N                                  | Name            |            | e-mail                 | @ntu.e            | @ntu.edu.iq                                           |       |
| Scientific Committee Approval<br>Date 06/01/2023 |                 | 06/01/2023 | Version Number 1.0     |                   |                                                       |       |

| Relation with other Modules |                        |          |   |
|-----------------------------|------------------------|----------|---|
| Prerequisite module         | AC Electrical Circuits | Semester | 1 |
| Co-requisites module        | None                   | Semester |   |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Module Aims                                            | <ul> <li>The aims of this module are:</li> <li>1. To introduce students to the basic theory of power semiconductor devices and passive components, their practical applications in power electronics.</li> </ul> |  |

|                             | 2. Toize students familiar with the principle of operation, design<br>and synthesis of different power conversion circuits and their<br>applications.                                               |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                             | 3. To give students the ability to practice problem solving and design skills individually and in small groups, reflecting the requirements of the engineering profession.                          |  |  |  |
|                             | <ol> <li>To further develop student's awareness of the multifaceted and<br/>often conflicting dimensions of electronics design including<br/>performance, cost and energy efficiency.</li> </ol>    |  |  |  |
|                             | 5. To inform and to allow students to question the practices of<br>modern power electronics engineering via discussions,<br>interactions and case studies led by leading industry<br>professionals. |  |  |  |
|                             | 6. To provide strong foundation for further study of power electronic circuits and systems.                                                                                                         |  |  |  |
|                             | On successful completion of this module a student will be able to:                                                                                                                                  |  |  |  |
|                             | 1. Relate basic semiconductor physics to properties of power devices, and combine circuit mathematics and characteristics of linear and non-linear devices.                                         |  |  |  |
| Module Learning<br>Outcomes | 2. Describe basic operation and compare performance of various power semiconductor devices, passive components and switching circuits.                                                              |  |  |  |
|                             | 3. Design and Analyze power converter circuits and learn to select<br>suitable power electronic devices by assessing the requirements of<br>application fields.                                     |  |  |  |
|                             | 4. Formulate and analyze a power electronic design at the system level and assess the performance.                                                                                                  |  |  |  |
|                             | 5. Identify the critical areas in application levels and derive typical alternative solutions, select suitable power converters to control Electrical Motors and other industry grade apparatus.    |  |  |  |

| <ul> <li>Multiphase choppers and switching mode regulators.</li> <li>Inverters: Definition, classification of inverters based on nature of input source, wave shape of output voltage, method of</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| communication & connections.                                                                                                                                                                                |
| • Principle of operation of single-phase bridge inverter with R and                                                                                                                                         |
| R-L loads, performance parameters.                                                                                                                                                                          |
| • Principle of operation of three phase bridge inverter with R and                                                                                                                                          |
| R-L loads, performance parameters                                                                                                                                                                           |
| Methods of voltage control and harmonic reduction of inverters                                                                                                                                              |
| <ul> <li>Brief idea of Resonant Pulse inverters.</li> </ul>                                                                                                                                                 |
| <ul> <li>AC controllers: Principle of on-off and phase control</li> </ul>                                                                                                                                   |
| • Single phase and three phase controllers with R and R-L loads, performance parameters.                                                                                                                    |
|                                                                                                                                                                                                             |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                            |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                  | <ul> <li>series of lectures. The lectures contain numerous practical<br/>design examples. Circuit simulation models of all of the circuits<br/>analyzed are provided and students are encouraged to use these<br/>to gain a better understanding.</li> </ul>               |  |  |  |
| Strategies                       | • Laboratory sessions are arranged in the form of a mini-project which is conducted over several sessions where students get the opportunity to design, simulate, build and test a DC-DC converter circuit and hence put into practice the theory covered in the lectures. |  |  |  |
|                                  | • Bite-sized pre-recorded content and detailed lecture notes aimed at independent learning.                                                                                                                                                                                |  |  |  |
|                                  | • Guest lectures and discussion sessions from industry.                                                                                                                                                                                                                    |  |  |  |
|                                  | • Visualization and sensory experience to correlate electronic circuit mathematical analysis and physical behavior.                                                                                                                                                        |  |  |  |
|                                  | • person tutorials to focused on problem solving, case studies and                                                                                                                                                                                                         |  |  |  |

| discussion of engineering challenges.                                        |  |  |
|------------------------------------------------------------------------------|--|--|
| • In-class review of taught material during revision week                    |  |  |
| • in-class tests where one or more of these are an assessment on the module. |  |  |

| Student Workload (SWL)                                                        |    |                                                           |      |  |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|------|--|
| The student's academic load is calculated for 15A week                        |    |                                                           |      |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester         | 63 | Structured SWL (h/w)<br>Regular weekly student load       | 4.2  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 62 | Unstructured SWL (h/w)<br>Irregular student load per week | 4.13 |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester |    | 125                                                       |      |  |

| Module Evaluation |                |                 |                |             |                              |
|-------------------|----------------|-----------------|----------------|-------------|------------------------------|
|                   |                | Time/Nu<br>mber | Weight (Marks) | Week Due    | Relevant Learning<br>Outcome |
|                   | Quizzes        | 5               | 10% (10)       | 1,4,6,8,11  | LO #1, 2 and 3               |
| Formative         | Assignments    | 5               | 10% (10)       | 3, 5,7,9,12 | LO # 3,4,5 and 6             |
| assessment        | Projects /Lab. | 14              | 10% (10)       | Continuous  |                              |
|                   | Report         | 1               | 10% (10)       | 13          | LO # 5, 8 and 10             |
| Summative         | Midterm Exam   | 2 hours         | 10% (10)       | 7           | LO #1-7                      |
| assessment        | Final Exam     | 2hr             | 50% (50)       | 16          | All                          |

| Delivery Plan (Weekly Syllabus) |                                                               |  |
|---------------------------------|---------------------------------------------------------------|--|
|                                 | Material to be Covered                                        |  |
| Week 1-2                        | Introduction to power electronics                             |  |
| Week 3                          | Switching devices, power and control devices                  |  |
| Week 4                          | • Type and characteristic, rating (diode, transistor,)        |  |
| Week 5                          | <ul> <li>Methods of turning – ON and turning – OFF</li> </ul> |  |
| Week 6                          | Protection of power devices                                   |  |
| Week 7                          | Triggering and base drive circuits                            |  |
| Week 8                          | Controlled rectifiers, 1-phase and 3-phase circuits           |  |
| Week 9                          | Half-wave and full-wave circuits                              |  |
| Week 10                         | • DC choppers, step-up and step-down choppers                 |  |
| Week 11                         | AC phase controller                                           |  |
| Week 12                         | • Inverters, 1-phase and 3-phase bridges                      |  |
| Week 13                         | • Some applications, a uninterrup table power supply.         |  |
| Week 14                         | • (UPS) b-switched mode power supply (SMP)                    |  |
| Week 15                         | Review for final exam                                         |  |
| Week 16                         | Final Exam                                                    |  |

| Delivery Plan (Weekly Lab. Syllabus) |                                            |  |
|--------------------------------------|--------------------------------------------|--|
|                                      | Material to be Covered                     |  |
| Week 1-2                             | Thyristor trigger angle & conduction angle |  |

| Week 3-4   | SCR half-wave rectifier with load resistance. |
|------------|-----------------------------------------------|
| Week 5-6   | SCR half wave rectifier with inductive load   |
| Week 7-8   | SCR Full-wave Rectifier with load resistance. |
| Week 9-11  | light dimmer circuit by using one scr         |
| Week 12-14 | AC voltage controlled                         |
| Week 15    | Review for final exam                         |
| Week 16    | Final exam                                    |

| Learning and Teaching Resources |                                                                                                                                                                                                    |                              |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
|                                 | Text                                                                                                                                                                                               | Available in the<br>Library? |  |
| Required Texts                  | <ol> <li>Power Electronics by MH Rashid, PHI.</li> <li>2. Power Electronics by PS Bhimra, Khanna Publishers.</li> <li>3. 3. Power Electronics by MD Singh and KB Khanchandani,<br/>TMH.</li> </ol> | Yes                          |  |
| Recommended<br>Texts            |                                                                                                                                                                                                    | Yes                          |  |
| Websites                        |                                                                                                                                                                                                    |                              |  |

| Module 28<br>Subject information |              |                 |  |  |
|----------------------------------|--------------|-----------------|--|--|
| Module Title                     | Gas Dynamics | Module Delivery |  |  |
| Module Type                      | Core         | ⊠Theory         |  |  |
| Module Code                      | RETE 304     | □Lecture        |  |  |

| ECTS Credits                          | 6                              |            |                                   |                                                                                                  | ⊠Lab                       |                                               |
|---------------------------------------|--------------------------------|------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|
|                                       |                                |            |                                   |                                                                                                  |                            |                                               |
| SWL (hr/sem)                          |                                | 150        |                                   |                                                                                                  |                            |                                               |
|                                       |                                |            |                                   | □Seminar                                                                                         |                            |                                               |
| Module Level                          | 3                              |            | Semester of Delivery              |                                                                                                  | 5                          |                                               |
| Administering Department              |                                | RETE       | College                           | college of Oil and Gas Technique<br>Engineering - Kirkuk, Northern<br>Technical University, Iraq |                            | as Techniques<br>uk, Northern<br>ersity, Iraq |
| Module Leader                         | Marwa Khaleel Rashid           |            | e-mail                            | marwa                                                                                            | marwa.khaleel23@ntu.edu.iq |                                               |
| Module Leader's A                     | Acad. Title Assistant lecturer |            | Module Leader's Qualification MSc |                                                                                                  | MSc                        |                                               |
| Module Tutor                          | Name (if available)            |            | e-mail                            | Email                                                                                            |                            |                                               |
| Peer Reviewer Name                    |                                | Name       | e-mail                            | Email                                                                                            |                            |                                               |
| Scientific Committee Approval<br>Date |                                | 06/01/2023 | Version Number 1.0                |                                                                                                  |                            |                                               |

| Relation with other Modules      |      |          |  |  |
|----------------------------------|------|----------|--|--|
| Relationship with other subjects |      |          |  |  |
| Prerequisite module              | None | Semester |  |  |
| Co-requisites module             | None | Semester |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                         |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Module Objectives                                      | <ol> <li>Understand the compressible flow fundamentals.</li> <li>Study the compressible flow with friction and heat transfer.</li> <li>Know the application of normal shock in compressible flow.</li> <li>Study the aircraft propulsion systems and rocket propulsion and its applications.</li> </ol> |  |  |  |

|                             | <ol> <li>Recognize the working principles and characteristics of steam and gas<br/>turbines.</li> </ol>                                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | 6. Recognize the working principles and characteristics of compressors.                                                                                                                                        |
|                             |                                                                                                                                                                                                                |
|                             | By the end of successful completion of this course, the student will be able to:                                                                                                                               |
| Module Learning<br>Outcomes | <ol> <li>Ability to solve the properties of compressible fluid flow, one Dimensional<br/>isentropic flow</li> </ol>                                                                                            |
|                             | 2. Ability to solve and analyze of Normal and Oblique shock waves.                                                                                                                                             |
|                             | 3. The ability to determine the properties of the flow in constant area duct with friction (fanon flow) and its applications                                                                                   |
|                             | 4. The ability to determine the properties of the flow in constant area duct with heat transfer (Rayleigh flow) and its applications                                                                           |
|                             | Indicative content includes the following.                                                                                                                                                                     |
|                             | Part A -                                                                                                                                                                                                       |
|                             | Introduction to gas dynamics, Isentropic flow, Bryton cycle ideal and actual.                                                                                                                                  |
|                             | [15hrs]                                                                                                                                                                                                        |
| Indicative Contents         | Shock waves in supersonic flow, normal shock and oblique shock waves[15 hrs]                                                                                                                                   |
|                             | Introduction to gas turbine power plant, [10 hrs]                                                                                                                                                              |
|                             | Introduction to rockets thrust equations, [15hrs]                                                                                                                                                              |
|                             | Part B                                                                                                                                                                                                         |
|                             | Fundamentals. To understand the charts of oblique shock waves, [15 hrs] Types of pumps, pumps Characteristics, [7 hrs] Introduction to jet propulsion, The Kinds, Impulse Turbine, Blades Efficiency. [15 hrs] |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | Implementing active learning in a class room requires preparation and some<br>changes to the lecture. However, the lecture content is not changed or replaced<br>with new material. The same lecture content is delivered to the students in a |  |  |  |

| bette | er way and the lecture time is used more effectively. The following are                                                                                                                                                                                                                                                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| some  | e of the techniques of active learning and cooperative learning I personally                                                                                                                                                                                                                                                                                                                                     |
| use   | in my engineering classes to enhance student's understanding and                                                                                                                                                                                                                                                                                                                                                 |
| reter | ition of the material:                                                                                                                                                                                                                                                                                                                                                                                           |
| •     | <b>One Minute Paper</b> : Students are asked to write a one-minute note (about the previous lecture, the homework or the material in general) to the instructor on a piece of paper. This provides a fast way for the teacher to have a quick feedback on students' understanding of what was previously covered.                                                                                                |
| 0     | <b>Muddiest Point</b> : When there is a long lecture with multiple topics covered, the students are given the opportunity to discuss the material covered in the lecture and list the most difficult parts of the lecture.                                                                                                                                                                                       |
| 0     | <b>Clarification Pause</b> : During the lecture, the students are given the time to go over the material written on the board, think about it and ask if they have any questions. Then, the lecturer answers the different questions raised before resuming the next part of the lecture.                                                                                                                        |
| 0     | <b>Questions and answers</b> : Usually during the lecture, questions are raised about the new material presented and questions are solved on the board. A sample of the questions asked include "Why do you think this topic is important?" or "what is the relationship between what we were talking about and this technique?" or "which technique is best?"                                                   |
| •     | <b>Critical Thinking, Group Discussion</b> : Students are given a handout with multiple problems and they are asked to apply what they learned in the lecture to solve the problems in groups. They are asked to discuss it together and come up with a single solution that all members agree on.                                                                                                               |
| •     | <b>Critical Thinking, Think-pair-share:</b> Students are asked to work individually on a problem for a short time; Then students pair up to compare their answers. Then they have to explain their answer and share it with the rest of the class.                                                                                                                                                               |
| 0     | <b>Peer Teaching:</b> If one member of the team solves the problem correctly, he will explain it to the rest of the group and discuss with them why his/her answer is correct and their answer is not. This allows the students to find out what went wrong and the mistake they made in solving the problem. This technique will help the student to avoid these mistakes when doing the homework or the exams. |
| 0     | Active Review Sessions: For each exam, students are given a practice<br>test with a set of problems a week in advance. They are encouraged to<br>work on the practice test individually first and then in groups to discuss<br>the answers. During the review session, the students are asked                                                                                                                    |

| questions about the problems in the practice test and they are given the<br>choice to decide which problems they want the professor to focus on.                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>Active presentations: Students are asked to do projects and then to<br/>submit reports and give presentations. Each member of the group is<br/>required to give part of the presentation and during the presentation,<br/>the students are given the opportunity to have an open discussion and<br/>answer questions about their projects.</li> </ul> |

| Student Workload (SWL)                                                        |    |                                                           |     |  |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|--|
| The student's academic load is calculated for 15 weeks.                       |    |                                                           |     |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester         | 63 | Structured SWL (h/w)<br>Regular weekly student load       | 4.2 |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 87 | Unstructured SWL (h/w)<br>Irregular student load per week | 5.8 |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester |    | 150                                                       |     |  |

| Module Evaluation |             |                 |                |            |                              |
|-------------------|-------------|-----------------|----------------|------------|------------------------------|
|                   |             | Time/Nu<br>mber | Weight (Marks) | Week Due   | Relevant Learning<br>Outcome |
| Formative         | Quizzes     | 5               | 10% (10)       | 3,6,8,10   | LO 1-LO3                     |
| assessment        | Assignments | 5               | 10% (10)       | 2, 5,9, 12 | LO #3, #4                    |

|                  | Projects /Lab.(report) | 10               | 20% (20) | Continuous | All     |
|------------------|------------------------|------------------|----------|------------|---------|
| Summative        |                        |                  |          |            |         |
| assessment       | Mid Term exam          | 2 hours          | 10% (10) | 7          | LO #1-4 |
|                  | Final Exam             | 3hr              | 50% (50) | 16         | All     |
| Total assessment |                        | 100% (100 Marks) |          |            |         |

| Delivery Plan (Weekly Syllabus) |                                                        |  |  |
|---------------------------------|--------------------------------------------------------|--|--|
|                                 | Material Covered                                       |  |  |
| Week 1                          | Introduction                                           |  |  |
| Week 2                          | Basic principles for compressible fluid flow           |  |  |
| Week 3                          | Isentropic flow with variable area.                    |  |  |
| Week 4                          | Isentropic flow with variable area.                    |  |  |
| Week 5                          | The Isotropic                                          |  |  |
| Week 6                          | Stationary Normal shock wave.                          |  |  |
| Week 7                          | Mid Term exam                                          |  |  |
| Week 8                          | nozzle and diffusers                                   |  |  |
| Week 9                          | Constant area adiabatic flow (Fanno flow)              |  |  |
| Week 10                         | Constant area flow with heat transfer (Rayleigh flow). |  |  |
| Week 11                         | Oblique shock wave.                                    |  |  |
| Week 12                         | Introduction to pumps, pumps classifications           |  |  |
| Week 13                         | Introduction to Compressors, types of compressors      |  |  |
| Week 14                         | Introduction to Compressors, types of compressors      |  |  |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                                   |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
|                                      | Material Covered                                                                  |  |  |  |
| Week 1                               | Lab 1: To study sound velocity in different solids and fluids                     |  |  |  |
| Week 2                               | Lab 2: To study various gas properties for different altitudes in the atmosphere. |  |  |  |
| Week 3                               | Lab 3: To study the wave propagation at different Mach numbers.                   |  |  |  |
| Week 4                               | Lab 4: To study the isentropic flow from variable area duct.                      |  |  |  |
| Week 5                               | Lab 5: To study the flow through constant area duct with friction. (Fanno flow).  |  |  |  |
| Week 6                               | Lab 6: To study the shock waves generated in the flow field.                      |  |  |  |
| Week 7                               | Lab 7: To study different types of aerospace vehicles.                            |  |  |  |

| Learning and Teaching Resources |                                                                                                                                                                                                                       |     |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|                                 | Available in the Library?                                                                                                                                                                                             |     |  |  |  |
| Required Texts                  | James EA John, Theo G, Keith, "Gas Dynamics" 3rd Edition,<br>John-Wiely, 2006.                                                                                                                                        | Yes |  |  |  |
| Recommended<br>Texts            | <ol> <li>The Dynamics and Thermodynamics of Compressible Fluid<br/>Flow (Vol,1) by A.H. Shapiro</li> <li>Power plant Technology, by MMMel-Wakil</li> <li>Steam Turbines Theory and Practice by WJ Keartin.</li> </ol> | No  |  |  |  |

|                                               | Module 29<br>Subject informat | ion |  |  |  |
|-----------------------------------------------|-------------------------------|-----|--|--|--|
| Module Title         Solar Energy Engineering |                               |     |  |  |  |

| Module Type                           | Core             |          | ⊠Theory<br>□ Lecture<br>⊠ Lab<br>⊠ Tutorial |                                                           |   |
|---------------------------------------|------------------|----------|---------------------------------------------|-----------------------------------------------------------|---|
| Module Code                           | <b>RETE 305</b>  |          |                                             |                                                           |   |
| ECTS Credits                          | 6                |          |                                             |                                                           |   |
| SWL (hr/sem)                          | 150              |          |                                             |                                                           |   |
| Module Level                          | 3                |          | Semester of D                               | elivery                                                   | 6 |
| Administration Department             |                  | RETE     | College                                     | College of Oil and Gas Techniques<br>Engineering - Kirkuk |   |
| Module Leader                         | Afrah Turki Awad |          | e-mail                                      | afrah.turki@ntu.edu.iq                                    |   |
| Module Leader's Acad.                 | Title            | Lecturer | Module Leade<br>Qualification               | Module Leader's PhD<br>Qualification                      |   |
| Module Tutor                          |                  |          | e-mail                                      |                                                           |   |
| Peer Reviewer Name                    |                  |          | e-mail                                      |                                                           |   |
| Scientific Committee Approval<br>Date |                  |          | Version<br>Number                           |                                                           |   |
| Relation with other Modules           |                  |          |                                             |                                                           |   |
| Prerequisite module                   |                  | 7        | None                                        | Semester                                                  |   |
| Co-requisites module                  |                  | None     | Semester                                    |                                                           |   |

| Module Aims                 | , Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | The course content is designed to provide comprehensive knowledge on solar radiation, analysis of solar radiation data, fundamentals of the solar thermal and photovoltaic system along with storage of energy required for effective design of efficient solar energy conversion devices. The concepts will be illustrated with practical examples, schematics and block diagrams wherever required. A sufficient number of numerical problems with solutions will be discussed in the course. This course is specifically designed for undergraduate and postgraduate students of Energy Engineering and Technology. Further, the course will be very much useful for students and researchers from varied academic backgrounds for the synthesis of novel energy conversion devices and processes. |
| Module Learning<br>Outcomes | <ul> <li>Basic principles of Solar Power (Solar Photovoltaic, Solar Thermal,<br/>Dish Type, Solar Tower)</li> <li>Design features of Solar Photovoltaic and Solar thermal equipment</li> <li>Manufacturing process for Solar Photovoltaic and Solar thermal<br/>equipment</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                     | <ul> <li>Quality assurance aspects of Solar Photovoltaic and Solar thermal equipment</li> <li>Erection, Commissioning and Testing aspects of Solar Photovoltaic and Solar thermal equipment</li> <li>Operation &amp; Maintenance aspects of Solar Photovoltaic and Solar thermal equipment</li> <li>Feasibility study &amp; Economics of Solar Photovoltaic and Solar thermal power project,</li> <li>How to prepare Feasibility Report / Detailed Project Report for Solar Photovoltaic and Solar thermal appraisal of Solar Photovoltaic and Solar thermal power project from lenders perspective</li> <li>Salient features of various Financing / Loan Agreements.</li> <li>Financing options in the development of Solar Photovoltaic and Solar thermal power project</li> <li>Tariff calculation of Solar Photovoltaic and Solar thermal power project and calculation of IRR, Payback period, etc.</li> <li>Regulatory aspects/provisions in development of Solar Photovoltaic and thermal power project.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicative Contents | The undergraduate Solar Energy course covers a comprehensive range of topics to equip students with a fundamental understanding of renewable energy principles and solar technology applications. The course begins with an introduction to renewable energy sources, emphasizing the significance of solar energy in the global energy landscape. Students delve into the fundamentals of solar radiation, learning about solar geometry, radiation measurement, and influencing factors. The curriculum includes in-depth explorations of solar photovoltaic (PV) technology, covering semiconductor physics, various types of solar cells, module construction, and electrical basics for PV systems. Solar thermal systems, including solar water heating and concentrating solar power, are studied extensively, with a focus on system components and thermal energy storage methods. Practical aspects of PV system design, such as sizing, layout, and efficiency analysis, are explored, preparing students to design both grid-connected and off-grid solar installations. Additionally, the course delves into the economic aspects of solar energy projects, including policy analysis, incentives, and financial evaluations. Environmental sustainability, project development, and emerging solar technologies are also integral components, allowing students to grasp the holistic aspects of solar energy engineering. Laboratory sessions and hands-on projects complement theoretical learning, providing students with practical skills and insights into solar energy applications. This comprehensive approach enables students to develop a strong foundation in solar energy engineering the solar energy applications in solar energy engineering their ability to |

| contribute effectively to the renewable energy sector and sustainable |
|-----------------------------------------------------------------------|
| development initiatives.                                              |

| Learning and Teaching Strategies |                                                                         |  |  |  |
|----------------------------------|-------------------------------------------------------------------------|--|--|--|
|                                  | Teaching Method 1 - Lectures                                            |  |  |  |
|                                  | Description:                                                            |  |  |  |
|                                  | Attendance Recorded: Yes                                                |  |  |  |
|                                  | Teaching Method 2 - Asynchronous online course materials                |  |  |  |
|                                  | Description: Podcasts, videos, and articles on Renewable Energy         |  |  |  |
|                                  | Attendance Recorded: No                                                 |  |  |  |
|                                  | Unscheduled Directed Student Hours (time spent away from the timetabled |  |  |  |
| Strategies                       | sessions but directed by the teaching staff).                           |  |  |  |
|                                  | Teaching Method 3 - Tutorials                                           |  |  |  |
|                                  | Description:                                                            |  |  |  |
|                                  | Attendance Recorded: Yes                                                |  |  |  |
|                                  | Teaching Method 4 - Practical                                           |  |  |  |
|                                  | Description: Practical homework assignments                             |  |  |  |
|                                  | Attendance Recorded: No                                                 |  |  |  |
|                                  | Unscheduled Directed Student Hours (time spent away from the timetabled |  |  |  |
|                                  | sessions but directed by the teaching staff).                           |  |  |  |

| Student Workload (SWL)                                                        |       |                                                           |     |  |  |
|-------------------------------------------------------------------------------|-------|-----------------------------------------------------------|-----|--|--|
| Structured SWL (h/sem)<br>Regular student load during the semester            | 78    | Structured SWL (h/w)<br>Regular weekly student load       | 5.2 |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 72    | Unstructured SWL (h/w)<br>Irregular student load per week | 4.8 |  |  |
| Total SWL (h/sem)<br>The student's total academic load during<br>the semester | g 150 |                                                           |     |  |  |

| Module Evaluation                                                               |               |         |          |            |             |
|---------------------------------------------------------------------------------|---------------|---------|----------|------------|-------------|
| Time/Number     Weight<br>(Marks)     Week Due     Relevant Learning<br>Outcome |               |         |          |            |             |
|                                                                                 | Quizzes       | 2       | 10% (10) | 5, 10      | LO #5 and 8 |
| Formative                                                                       | Seminar       | 2       | 10% (10) | Continuous | All         |
| assessment                                                                      | Lab Report    | 2       | 20% (20) | 6, 13      | LO # 2, 9   |
|                                                                                 | Mid Term exam | 2 hours | 10% (10) | 10         | LO #1-11    |

| Summative<br>assessment | Final Exam | 3hr | 50% (50) | 16 | All |
|-------------------------|------------|-----|----------|----|-----|
| 100% (100 Marks)        |            |     |          |    |     |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Week 1                          | Energy Scenario, overview of solar energy conversion devices and applications, physics of propagation of solar radiation from the sun to earth |  |  |  |  |  |
| Weeks 2                         | Sun-Earth Geometry, Extra-Terrestrial and Terrestrial Radiation, Solar energy measuring instruments                                            |  |  |  |  |  |
| Weeks 3                         | Estimation of solar radiation under different climatic conditions, Estimation of total radiation                                               |  |  |  |  |  |
| Week 4                          | Fundamentals of solar PV cells, principles and performance analysis, modules, arrays, theoretical maximum power generation from PV cells.      |  |  |  |  |  |
| Week 5                          | PV standalone system components, Standalone PV-system design.                                                                                  |  |  |  |  |  |
| Week 6                          | Components of grid-connected PV system, solar power plant design and performance analysis.                                                     |  |  |  |  |  |
| Week 7                          | Fundamentals of solar collectors, Snails law, Bougers law, Physical significance of Transmissivity – absorptivity product.                     |  |  |  |  |  |
| Week 8                          | Performance anlaysis of liquid flat plate collectors and testing                                                                               |  |  |  |  |  |
| Week 9                          | Performance analysis of Solar Air heaters and testing                                                                                          |  |  |  |  |  |
| Week 10                         | Mid-Term Exam                                                                                                                                  |  |  |  |  |  |
| Week 11                         | Solar thermal power generation (Solar concentrators).                                                                                          |  |  |  |  |  |
| Week 12                         | Thermal Energy Storage (sensible, latent and thermochemical) and solar pond                                                                    |  |  |  |  |  |
| Weeks (13-14)                   | Applications: Solar Refrigeration, Passive architecture, solar distillation, and ermeging technologies.                                        |  |  |  |  |  |
| Week 15                         | Preparing for the final exam                                                                                                                   |  |  |  |  |  |

| Learning and Teaching Resources |                                                                                            |    |  |  |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------|----|--|--|--|--|--|
|                                 | Text Available in the Library?                                                             |    |  |  |  |  |  |
| Required Texts                  | GN Tiwari, Solar Energy, Fundamentals, Design,<br>Modeling and Applications, Narosa, 2002. | No |  |  |  |  |  |

| SP Sukhatme and JK Nayak, Solar Energy: Principles of<br>Thermal Collection and Storage, Tata McGraw Hill, | No |
|------------------------------------------------------------------------------------------------------------|----|
| 2006.                                                                                                      |    |

| Module 30<br>Subject information      |       |                 |                                  |                    |                                              |  |
|---------------------------------------|-------|-----------------|----------------------------------|--------------------|----------------------------------------------|--|
| Module Title                          |       | Biofuel         |                                  |                    |                                              |  |
| Module Type                           |       | Core            |                                  | ⊠Theory            |                                              |  |
| Module Code                           |       | <b>RETE 306</b> | □ Lecture<br>⊠ Lab               |                    |                                              |  |
| ECTS Credits                          | 5     |                 |                                  | □ Tutorial         |                                              |  |
| SWL (hr/sem)                          | 125   |                 |                                  | Seminar            |                                              |  |
| Module Level                          |       | 3               | Semester of Delivery             |                    | 6                                            |  |
| Administration Depar                  | tment | RETE            | College                          | College of<br>Eng  | Oil and Gas Techniques<br>gineering - Kirkuk |  |
| Module Leader                         |       |                 | e-mail                           | <u>@ntu.edu.iq</u> |                                              |  |
| Module Leader's Acad. Title           |       | Lecturer        | Module Leader's<br>Qualification |                    | PhD                                          |  |
| Module Tutor                          |       | e-mail          |                                  |                    |                                              |  |
| Peer Reviewer Name                    |       |                 | e-mail                           |                    |                                              |  |
| Scientific Committee Approval<br>Date |       |                 | Version<br>Number                |                    | 1.0                                          |  |

| Relation with other Modules |                                            |          |  |  |  |  |  |  |
|-----------------------------|--------------------------------------------|----------|--|--|--|--|--|--|
| Prerequisite module         | None                                       | Semester |  |  |  |  |  |  |
| Co-requisites module        | Co-requisites module     None     Semester |          |  |  |  |  |  |  |

## Module Aims, Learning Outcomes and Indicative Contents

|                     | 1. Provide an overview of existing energy utilization, production and              |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------|--|--|--|--|
|                     | infrastructure.                                                                    |  |  |  |  |
| Module Aims         | <ol><li>Cover the consequences of our energy choices on the environment.</li></ol> |  |  |  |  |
|                     | 3. Introduce the impact of energy on food production and delivery.                 |  |  |  |  |
|                     | 4. Examine the growing field of biofuels by introducing the basics of renewable    |  |  |  |  |
|                     | biofuel production.                                                                |  |  |  |  |
|                     | 1. Define Biofuel and identify their applications.                                 |  |  |  |  |
| Module Learning     | <ol><li>Define the food which is used in preparing biofuel.</li></ol>              |  |  |  |  |
| Outcomes            | 3. Preparation of bio hydrogen.                                                    |  |  |  |  |
| Outcomes            | 4. Preparation of biogas.                                                          |  |  |  |  |
|                     | 5. Preparation of biodiesel.                                                       |  |  |  |  |
|                     | 6. Preparation of bioethanol.                                                      |  |  |  |  |
|                     | 7. Preparation of biobutanol.                                                      |  |  |  |  |
|                     | After studying this chapter, the student is expected to master the following       |  |  |  |  |
|                     | knowledge and skills:                                                              |  |  |  |  |
|                     | 1. Biofuel production, microorganisms, biochemical pathway, and                    |  |  |  |  |
|                     | biological approaches [10 hrs].                                                    |  |  |  |  |
| Indicative Contents | <ol><li>Biohydrogen and biomethanation production [20 hrs].</li></ol>              |  |  |  |  |
|                     | 3. Biodiesel, bioethanol, and biobutanol [15].                                     |  |  |  |  |
|                     | 4. Reactor configuration [5 hrs].                                                  |  |  |  |  |
|                     | 5. Microbial Electrochemical Technologies [5 hrs].                                 |  |  |  |  |
|                     | 6. Energy analysis [5 hrs].                                                        |  |  |  |  |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | The biofuel module employs a range of effective learning and teaching strategies.<br>Students engage in theoretical lectures, practical demonstrations, and hands-on<br>laboratory sessions to grasp the underlying principles and gain practical skills.<br>Case studies and real-world scenarios enhance problem-solving abilities, while<br>group projects foster teamwork and communication skills. Continuous<br>assessment methods, including assignments and practical assessments, ensure<br>students' progress and understanding of the subject matter. The module<br>promotes equipping students with the knowledge and skills necessary for success<br>in the field of biofuel. |  |  |  |

| Student Workload (SWL)                                                        |    |                                                           |      |  |  |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|------|--|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester         | 63 | Structured SWL (h/w)<br>Regular weekly student load       | 4.2  |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 62 | Unstructured SWL (h/w)<br>Irregular student load per week | 4.13 |  |  |
| Total SWL (h/sem)<br>The student's total academic load during<br>the semester |    | 125                                                       |      |  |  |

| Module Evaluation       |                |             |                   |               |                              |  |
|-------------------------|----------------|-------------|-------------------|---------------|------------------------------|--|
|                         |                | Time/Number | Weight<br>(Marks) | Week Due      | Relevant Learning<br>Outcome |  |
| Formative<br>assessment | Quizzes        | 4           | 10% (10)          | 3,6,8, and 14 | LO #1,#2,#3, and#7           |  |
|                         | Seminar        | 2           | 10% (10)          | 7 and 13      | LO 4 and #6                  |  |
|                         | Projects /Lab. | 10          | 20% (20)          | Contentious   | All                          |  |
| Summative<br>assessment | Mid Term exam  | 2 hours     | 10% (10)          | 7             | LO #1-11                     |  |
|                         | Final Exam     | 3hr         | 50% (50)          | 16            | All                          |  |
| 100% (100 Marks)        |                |             |                   |               |                              |  |

| Delivery Plan (Weekly Syllabus) |                                                                            |  |  |
|---------------------------------|----------------------------------------------------------------------------|--|--|
| Week 1                          | Introduction to Biofuels                                                   |  |  |
| Weeks 2                         | Biofuels Production from Renewable Energy Sources                          |  |  |
| Weeks 3                         | Microorganisms Involved in Biofuel Production Processes                    |  |  |
| Week 4                          | Biochemical Pathways for the Biofuel Production                            |  |  |
| Week 5                          | Molecular Biological Approaches for the Improvement of Biofuels Production |  |  |
| Week 6                          | Biohydrogen Production by the Dark Fermentation Process                    |  |  |
| Week 7                          | Biohydrogen Production by Photobiological Processes                        |  |  |
| Week 8                          | Biomethanation.                                                            |  |  |
| Week 9                          | Bioethanol                                                                 |  |  |
| Week 10                         | Bioethanol                                                                 |  |  |
| Week 11                         | Biodiesel                                                                  |  |  |
| Week 12                         | Microbial Electrochemical Technologies and Their Applications              |  |  |
| Weeks 13                        | Effect of Reactor Configurations on Gaseous Biofuel Production             |  |  |
| Weeks 14                        | Scale-up and Case Studies of Biofuel Production Processes                  |  |  |
| Week 15                         | Preparing for the final exam                                               |  |  |

| Delivery Plan (Weekly Syllabus) |                                         |  |  |
|---------------------------------|-----------------------------------------|--|--|
| Week 1                          | Lab 1: Fermentation experiment.         |  |  |
| Weeks 2                         | Lab 2: Anaerobic digestion experiment.  |  |  |
| Weeks 3                         | Lab 3: Stem Distillation experiment.    |  |  |
| Week 4                          | Lab 4: Adsorption experiment.           |  |  |
| Week 5                          | Lab 5: Gasification experiment.         |  |  |
| Week 6                          | Lab 6: Liquefaction experiment.         |  |  |
| Week 7                          | Lab 7: Trans esterification experiment. |  |  |

| Learning and Teaching Resources |                                                        |                           |  |  |  |
|---------------------------------|--------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                   | Available in the Library? |  |  |  |
| Required Texts                  | Fundamental of biofuel production processes, Debabrata | Yes                       |  |  |  |
|                                 |                                                        |                           |  |  |  |
|                                 | No                                                     |                           |  |  |  |
|                                 | Janssen WIP Renewable Energies                         |                           |  |  |  |
|                                 | https://www.aiche.org/topics/energy/biofuels-energy    |                           |  |  |  |

| Module31<br>Subject information                                  |                |            |                                       |  |  |
|------------------------------------------------------------------|----------------|------------|---------------------------------------|--|--|
| Module Title Convection heat transfer, and heat exchanger design |                |            | Module Delivery                       |  |  |
| Module Type                                                      | dule Type Core |            | ⊠Theory                               |  |  |
| Module Code RETE 301                                             |                | □Lecture   |                                       |  |  |
| ECTS Credits 7                                                   |                | ⊠Lab       |                                       |  |  |
| SWL (hr/sem) 175                                                 |                |            | ⊠Tutorial<br>□Practical<br>□Seminar   |  |  |
| Module Level3Semester of                                         |                | f Delivery | 6                                     |  |  |
| Administering Department RETE C                                  |                | College    | Oil and gas technical college/ Kirkuk |  |  |

| Module<br>Leader                      |                                       |                 | e-mail                        |                          |     |  |
|---------------------------------------|---------------------------------------|-----------------|-------------------------------|--------------------------|-----|--|
| Module Leader's Acad. Title           |                                       | Assist. Lecture | Module Leader's Qualification |                          | MSc |  |
| Module Tutor                          | Futor         Ali Qani Mohammed Saleh |                 | e-mail                        | ali.alkurdi23@ntu.edu.iq |     |  |
| Peer Reviewer Name                    |                                       | Name            | e-mail                        | Email                    |     |  |
| Scientific Committee<br>Approval Date |                                       | 06/01/2023      | Version Nu                    | umber                    | 1.0 |  |

| Relation with other Modules |          |          |  |
|-----------------------------|----------|----------|--|
| Prerequisite module         | RETE 300 | Semester |  |
| Co-requisites module        | None     | Semester |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                    |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                        | 1. Introduce the student to the groups used in heat transfer and to know their composition and how they work.                                                                                                                                      |  |  |  |
|                                                        | <ol> <li>Introduce the student Basic Concepts of Heat Transfer, Heat Transfer<br/>Mechanisms, Thermal conductivity -convection heat transfer -Radiation heat<br/>transfer</li> </ol>                                                               |  |  |  |
| Module Objectives                                      | 3. Introducing the student the main scientific principle in the field of heat transfer and its application in the Refrigeration, Cooling, and air conditioning fields, power plants.                                                               |  |  |  |
|                                                        | 4. Introducing students how to calculate Overall Heat Transfer Coefficient                                                                                                                                                                         |  |  |  |
|                                                        | 5. Introducing students study the heat conduction through a large plane wall cylinder and sphere as one dimensional steady state case and a multilayer plane walls, cylinders, and spheres medium under steady conditions and unsteady conditions. |  |  |  |
|                                                        | 6. Providing the student with practical and technical experience in calculating the heat transfer from finned surfaces.                                                                                                                            |  |  |  |

|                     | 7. Introducing the student to Investigate the steady state one dimensional heat conduction in a cylinder and sphere, and estimate the critical radius of insulation for them                                                                              |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 8 Introduce the student Basic Concepts convection heat transfer, viscous flow, inviscid flow, laminar boundary layer on flat plate.                                                                                                                       |
|                     | 9. Introducing students study Forced convection -Empirical relations for pipe<br>and flow over flat plate and across tube banks, Empirical relation for free<br>convection on a vertical and horizontal flat plate, vertical and horizontal<br>cylinders. |
|                     | 10. Introduce the student Type of heat exchanger, The log mean temperature difference Heat exchangers-The overall heat transfer coefficient.                                                                                                              |
|                     | 11. Introduce the student Basic Concepts Radiation heat transfer, physical mechanism, Radiation shape factor, relationship between shape factors, heat exchange between non-black bodies, Infinite parallel planes – radiation shields.                   |
|                     | <ul> <li>5- Show the student's ability to use knowledge to prepare scientific and applied research.</li> <li>6- The ability to use electronic programs to solve the problems of heat transfer.</li> </ul>                                                 |
| Outcomes            | 7- The ability to think to extract engineering solutions to problems related to heat transfer.                                                                                                                                                            |
|                     | <ul> <li>8- The ability to keep pace with scientific and technical modernity.</li> <li>9- Teaching leadership skills, the value of commitment, love of work and doubtion to it</li> </ul>                                                                 |
|                     | 10- The ability to calculate the rate of heat transfer.                                                                                                                                                                                                   |
|                     | 11- The ability to calculate the heat transfer from finned surfaces.                                                                                                                                                                                      |
|                     | 12- The ability to design heat exchangers.                                                                                                                                                                                                                |
|                     | After studying this chapter, the student is expected to master the following knowledge                                                                                                                                                                    |
|                     | and skills: .                                                                                                                                                                                                                                             |
|                     | 1-Basic Concepts of Heat Transfer, and Heat Transfer Mechanisms [10 hrs]                                                                                                                                                                                  |
| Indiantivo Contonto | 2-Steady State One Dimensional Heat Conduction in a Large Plane Wall, and in                                                                                                                                                                              |
| indicative Contents | 3-Conduction through Multilaver Plane Wall Overall Heat Transfer Coefficient.                                                                                                                                                                             |
|                     | Critical Radius of Insulation [15 hrs]                                                                                                                                                                                                                    |
|                     | 4-Unsteady State One Dimensional heat transfer. [5 hrs]                                                                                                                                                                                                   |
|                     | 5-Studying the heat transfer from finned surfaces [10 hrs]                                                                                                                                                                                                |
|                     | 6-force and free convection [20 hrs].                                                                                                                                                                                                                     |
|                     | 7- Design heat exchangers [15 hrs].                                                                                                                                                                                                                       |
|                     | 8- Solve the problem of radiation heat transfer [20 hrs]                                                                                                                                                                                                  |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this module<br>is to encourage students' participation in the exercises, while at the same time refining<br>and expanding their critical thinking skills. This will be achieved through classes,<br>interactive tutorials and by considering types of simple experiments involving some<br>sampling activities that are interesting to the students. |  |  |  |

| Student Workload (SWL) | Student | Workload | (SWL) |
|------------------------|---------|----------|-------|
|------------------------|---------|----------|-------|

## The student's academic load is calculated for 15 weeks.

| Structured SWL (h/sem)<br>Regular student load during the<br>semester         | 93 | Structured SWL (h/w)<br>Regular weekly student load       | 6.2 |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 82 | Unstructured SWL (h/w)<br>Irregular student load per week | 5.4 |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester |    | 175                                                       |     |

| Module Evaluation |                |             |                |            |                              |
|-------------------|----------------|-------------|----------------|------------|------------------------------|
|                   |                | Time/Number | Weight (Marks) | Week Due   | Relevant Learning<br>Outcome |
|                   | Quizzes        | 3           | 10% (10)       | 2,6 and 7  | LO #3, #5 and #8             |
| Formative         | Assignments    | 3           | 10% (10)       | 2,6 and 12 | LO #2, #4 and #7             |
| assessment        | Projects /Lab. | 10          | 10% (10)       | Continuous | All                          |
|                   | Report         |             |                |            |                              |

| Summative        | Midterm Exam | 2hr              | 10% (10) | 7  | LO #1 - #7 |
|------------------|--------------|------------------|----------|----|------------|
| assessment       | Final Exam   | 3hr              | 50% (50) | 16 | All        |
| Total assessment |              | 100% (100 Marks) |          |    |            |

|         | Delivery Plan (Weekly Syllabus)                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Material Covered                                                                                                                                          |
| Week 1  | Introduction, Basic Concepts of Heat Transfer, Heat Transfer Mechanisms                                                                                   |
| Week 2  | Steady State One Dimensional Heat Conduction in a Large Plane Wall, and in a Cylinder. Conduction through Multilayer Plane Wall, and Cylinder.            |
| Week 3  | Overall Heat Transfer Coefficient, Critical Radius of Insulation, Thermal Contact Resistance.                                                             |
| Week 4  | Heat transfer from finned surfaces.                                                                                                                       |
| Week 5  | Transient Heat Conduction, (Lumped System Analysis), Two-Dimensional Steady Heat Conduction                                                               |
| Week 6  | Fundamentals of convection –viscous flow –inviscid flow –laminar boundary layer on flat plate,<br>The thermal boundary layer –turbulent flow in the tube. |
| Week 7  | Empirical Equations of Forced convection for Laminar and Turbulent Flow on Flat Plate, across cylinders and sphere                                        |
| Week 8  | Empirical Equations of Forced convection for Laminar and Turbulent Flow across cylinders and sphere                                                       |
| Week 9  | Empirical Equations of Forced convection for Laminar and Turbulent Flow inside pipes and ducts                                                            |
| Week 10 | Empirical relation for free convection on a vertical and horizontal flat plate, vertical and horizontal cylinders                                         |
| Week 11 | Introduction to Heat Exchangers, Kinds of Heat Exchangers, The Overall Heat Transfer Coefficient                                                          |
| Week 12 | Fouling Factor, The Log Mean Temperature Difference Method                                                                                                |

| Week 13 | The Effectiveness of the heat exchangers, The Performances for Difference Kinds of the Heat Exchangers                                            |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                   |
| Week 14 | Heat Radiation, Introduction, Basic Concepts, Characteristics of Radiation, The View Factor<br>Radiation Heat Transfer Between Two Black Surfaces |
| Week 15 | Radiation Heat Transfer Between Two Gray Surfaces, Radiation Shields and The Radiation Effect                                                     |
| Week 16 | Preparatory week before the final exam                                                                                                            |

|         | Delivery Plan (Weekly Lab. Syllabus)              |
|---------|---------------------------------------------------|
|         | Material Covered                                  |
| Week 1  | Lab 1: Temperature measurements                   |
| Week 2  | Lab 2: Thermal conductivity.                      |
| Week 3  | Lab 3: Calibration of thermo-couple               |
| Week 4  | Lab 4: Flow across tube banks                     |
| Week 5  | Lab 5: Heat exchangers                            |
| Week 6  | Lab 6: Critical Heat Flux                         |
| Week 7  | Lab 7: Heat Transfer through the Lagged Pipe      |
| Week 8  | Lab 8: Thermal Conductivity of Insulating Powder  |
| Week 9  | Lab 9 Heat Transfer from a Pin-Fin Apparatus      |
| Week 10 | Lab 10: Heat Transfer through Composite Wall      |
| Week 11 | Lab 11: Heat Transfer in Forced Convection        |
| Week 12 | Lab 12: Parallel Flow/Counter Flow Heat Exchanger |
| Week 13 | Lab 13: Heat Transfer in Natural Convection       |

| Week 14 | Lab 14: Thermal Conductivity of Metal Rod |
|---------|-------------------------------------------|
| Week 15 | Lab 15: Emissivity Measurement Apparatus  |

| Learning and Teaching Resources |                                                                              |                           |  |  |  |
|---------------------------------|------------------------------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                                         | Available in the Library? |  |  |  |
| Required Texts                  | . Heat transfer By: JP Holman, Heat and mass transfer By:<br>YunusA. Gengel, | Yes                       |  |  |  |
| Recommended<br>Texts            | . Fundamentals of heat and mass transfer By: Incropera                       | Yes                       |  |  |  |
| Websites                        | https://www. Heat transfer handbook By: Bijan                                |                           |  |  |  |

| Module32<br>Subject information        |                                       |                      |                 |                                     |               |  |
|----------------------------------------|---------------------------------------|----------------------|-----------------|-------------------------------------|---------------|--|
| Module Title                           | Combustion & Pollution<br>Engineering |                      | Module Delivery | Module Delivery                     |               |  |
| Module Type                            |                                       | Core                 |                 | ⊠Theory                             |               |  |
| Module Code                            | RETE 307                              |                      |                 | □Lecture                            |               |  |
| ECTS Credits                           | 6                                     |                      |                 | ⊠Lab                                | ⊠Lab          |  |
| SWL (hr/sem)                           | 150                                   |                      |                 | ⊠Tutorial<br>□Practical<br>□Seminar |               |  |
| Module Level                           |                                       | 3                    | Semester o      | f Delivery                          | 6             |  |
| Administering De                       | dministering Department RETE          |                      | College         | Oil and gas technical co            | llege/ Kirkuk |  |
| Module Leader e-mail                   |                                       | e-mail               |                 |                                     |               |  |
| Module Leader's Acad. Title Module Lea |                                       | ader's Qualification |                 |                                     |               |  |
| Module Tutor         e-matrix          |                                       | e-mail               | @ntu.edu.iq     |                                     |               |  |
| Peer Reviewer Name Name                |                                       | Name                 | e-mail          | Email                               |               |  |

| Scientific Committee Approval<br>Date | 06/01/2023 | Version Number | 1.0 |
|---------------------------------------|------------|----------------|-----|
|---------------------------------------|------------|----------------|-----|

| Relation with other Modules |      |          |  |  |
|-----------------------------|------|----------|--|--|
| Prerequisite module         |      | Semester |  |  |
| Co-requisites module        | None | Semester |  |  |

| Modu              | Module Aims, Learning Outcomes and Indicative Contents                                                                                                                                       |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                   | 1. Introduce the student to the types of Fuel & combustion process.                                                                                                                          |  |  |  |  |  |
|                   | 2. Introduce the student Basic Concepts of Thermodynamics of combustion, stoichiometric combustion, incomplete combustion, complete combustion, Air fuel ratio( $A/F$ ),                     |  |  |  |  |  |
|                   | 3.Introducing students how to calculate adiabatic flame temperature, constant pressure adiabatic flame temperature, constant volume adiabatic flame temperature.                             |  |  |  |  |  |
|                   | 4. Introducing students to study Classifications of engines and engine performance.                                                                                                          |  |  |  |  |  |
|                   | 5.Introducing the student to Air-Standard cycles.                                                                                                                                            |  |  |  |  |  |
| Module Objectives | 6. Introduce the student types Hydrocarbon fuels, Hydrocarbon fuels, gasoline, Diesel fuel, Alternate fuels.                                                                                 |  |  |  |  |  |
|                   | 7.Introducing students to study octane Number & Catane Number, Self-Ignition<br>Characteristics of Fuels, Octane Number and Engine Knock                                                     |  |  |  |  |  |
|                   | 8. Introduce the student Basic Concepts of air pollution, physical and chemical fundamentals.                                                                                                |  |  |  |  |  |
|                   | 9. Introduce the student Ambient air quality standards for criteria pollutants, Air pollution standards, Air pollution regulation.                                                           |  |  |  |  |  |
|                   | 10.To understand Air pollutants classification, Transport and air pollution, Causes of air pollution from Transportation.                                                                    |  |  |  |  |  |
|                   | 11. Introducing students study the strategies for control of emissions in SI engines; Add on systems to control emissions inside the engine: EGR, crankcase and evaporative emission control |  |  |  |  |  |
| Module Learning   | Important: Write at least 6 Learning Outcomes, better to be equal to the number of                                                                                                           |  |  |  |  |  |
| Outcomes          | applied research. 2. The ability to use electronic programs to solve the problems of the                                                                                                     |  |  |  |  |  |

|                     | combustion process. 3. The ability to think to extract engineering solutions to problems related to combustion and pollution. 4. The ability to keep pace with scientific and technical modernity. 5. Teaching leadership skills, the value of commitment, love of work and devotion to it. 6. The ability to calculate the rate of adiabatic flame temperature. 7. The ability to calculate the Calculation of concentrations of air pollutants in the atmosphere. 8. The ability to control emissions in SI engines. |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicative Contents | After studying this chapter, the student is expected to master the following knowledge<br>and skills:<br>1-Basic Concepts of combustion, and types of combustion [15 hrs] 2- Calculations of<br>adiabatic flame temperature [10 hrs] 3- Classifications of engines and engine<br>performance. [15 hrs]                                                                                                                                                                                                                 |
|                     | 4- Types of hydrocarbon fuels, Hydrocarbon fuels gasoline, Diesel fuel, Alternate fuels.<br>[15 hrs] 5-Studying Octane Number & Cetane Number [10 hrs]                                                                                                                                                                                                                                                                                                                                                                 |
|                     | 6- Air pollution and Air pollution regulation [20 hrs].                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 7- Strategies for controlling emissions in SI engines [15 hrs].                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this module<br>is to encourage students' participation in the exercises, while at the same time refining<br>and expanding their critical thinking skills. This will be achieved through classes,<br>interactive tutorials and by considering types of simple experiments involving some<br>sampling activities that are interesting to the students. |  |  |  |

| Student Workload (SWL)                                                    |    |                                                           |     |  |
|---------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|--|
| The student's academic load is calculated for 15 weeks.                   |    |                                                           |     |  |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester     | 63 | Structured SWL (h/w)<br>Regular weekly student load       | 4.2 |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester | 87 | Unstructured SWL (h/w)<br>Irregular student load per week | 5.8 |  |

## The student's total academic load

| Module Evaluation       |                |                  |                |                   |                              |  |
|-------------------------|----------------|------------------|----------------|-------------------|------------------------------|--|
|                         |                | Time/Number      | Weight (Marks) | Week Due          | Relevant Learning<br>Outcome |  |
| _                       | Quizzes        | 4                | 20% (20)       | 2, 6 and 9,<br>12 | LO #1, #5 and #6, #8         |  |
| Formative<br>assessment | Assignments    | 3                | 15% (15)       | 4, 8 and 14       | LO #2, #3 and #7             |  |
|                         | Projects /Lab. |                  |                |                   |                              |  |
|                         | Report         | 1                | 5% (5)         | 13                | LO #4                        |  |
| Summative               | Midterm Exam   | 2hr              | 10% (10)       | 7                 | LO #1 - #7                   |  |
| assessment              | Final Exam     | 3hr              | 50% (50)       | 16                | All                          |  |
| Total assessment        |                | 100% (100 Marks) |                |                   |                              |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                                                                                               |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | Material Covered                                                                                                                                                                                                              |  |  |  |
| Week 1                          | Thermodynamics of combustion, . Review of property relations, letant heat of vaporization, Ideal gas mixtures, Fuel & combustion, stoichiometric combustion, incomplete combustion, complete combustion, Air fuel ratio (A/F) |  |  |  |
| Week 2                          | Excess of air, less of air, theoretical of air, Equivalence ratio.                                                                                                                                                            |  |  |  |
| Week 3                          | Application of 1st law of thermodynamic on combustion process, Closed system (non-flow process),<br>Open system (steady-flow process)                                                                                         |  |  |  |
| Week 4                          | adiabatic flame temperature, constant pressure adiabatic flame temperature, constant volume adiabatic flame temperature                                                                                                       |  |  |  |

|          | Classifications of engines, Types of Ignition, Engine Cycle, Basic Design, Air Intake Process, Method of |
|----------|----------------------------------------------------------------------------------------------------------|
| Week 5   | Fuel Input for SI Engines, Fuel Used, Application, Type of Cooling                                       |
| Week 6   | Engine performance, brake power, brake thermal efficiency, brake mean effective pressure, Specific       |
| vveek o  | fuel consumption, Mechanical efficiency, Volumetric efficiency                                           |
|          | Air-Standard cycle, Air-Standard Assumptions, pressure volume diagram, Mean process on pv                |
| Week 7   | diagram, Otto Cycle, Thermal efficiency of the ideal Otto cycle, diesel cycle, Thermal efficiency of the |
|          | ideal diesel cycle                                                                                       |
| Wook 8   | Air-fuel cycle, Air-fuel cycle assumption, constant volume cycle (gasoline engine cycle), constant       |
| WEEKO    | pressure cycle (Diesel engine cycle)                                                                     |
| Week 9   | Hydrocarbon fuels, Hydrocarbon fuels, gasoline, Diesel fuel, Alternate fuels                             |
| Wook 10  | Octane Number & Cetane Number, Self-Ignition Characteristics of Fuels, Octane Number and Engine          |
| Week 10  | Knock                                                                                                    |
|          | Introduction to pollution, Ecological Systems and pollution, Toxic pollutants, Environmental factors     |
| Week 11  | affecting toxicity, Ambient air quality standards for criteria pollutants, Air pollution standards, Air  |
|          | pollution regulation                                                                                     |
| Week 12  | Air pollutants classification, Transport and air pollution, Causes of air pollution from Transportation  |
|          | Calculation of concentrations of air pollutants in atmosphere , Description of air pollutants , A-       |
| Week 13  | Criteria Pollutants , Carbon Monoxide (CO) , Nitrogen Oxides (NO2) , Sulfur Oxides (SOx) , Particulate   |
|          | Matter (PM-10) , Organic air pollutants (VOCS) ), Hydrocarbons (HC), Ozone (O3), Lead (Pb)               |
| Week 14  | Calculation of concentrations of air pollutants in the atmosphere,                                       |
| Wock 15  | Global Climate Change - Greenhouse Gases Toxic Pollutants, Radioactive pollutants, indoor                |
| AAGGK TO | pollutants and Non-Criteria pollutants                                                                   |
| Week 16  | Preparatory week before the final exam                                                                   |
|          |                                                                                                          |

| Learning and Teaching Resources |      |                           |  |
|---------------------------------|------|---------------------------|--|
|                                 | Text | Available in the Library? |  |

| Required Texts       | . Engineering Fundamentals of the Internal Combustion<br>Engine<br>.By Willard W. Pulkrabek | Yes |
|----------------------|---------------------------------------------------------------------------------------------|-----|
| Recommended<br>Texts | AN INTRODUCTION TO COMBUSTION<br>Concepts and Application.BY Stephen R. Turns               | Yes |
| Websites             |                                                                                             |     |

| Module33<br>Subject information |                                                             |            |                      |                                       |              |                 |
|---------------------------------|-------------------------------------------------------------|------------|----------------------|---------------------------------------|--------------|-----------------|
| Module Title                    | Numerical Analysi                                           |            | is                   | Modu                                  | ıle Delivery |                 |
| Module Type                     | Core                                                        |            |                      |                                       | ⊠Theory      |                 |
| Module Code                     | COGTEK 301                                                  |            |                      |                                       |              |                 |
| ECTS Credits                    | 6                                                           |            |                      | ⊠Lab                                  |              |                 |
|                                 |                                                             |            |                      |                                       | ⊠Tutorial    |                 |
| SWL (hr/sem)                    | 150                                                         |            | □Practical           |                                       |              |                 |
|                                 |                                                             |            |                      | □Seminar                              |              |                 |
| Module Level                    |                                                             | 3          | Semester of Delivery |                                       | 6            |                 |
| Administering                   | Department                                                  | RETE       | College              | Oil and gas technical college/ Kirkuk |              | college/ Kirkuk |
| Module Leader                   |                                                             | e-mail     |                      |                                       |              |                 |
| Module Leader's                 | Module Leader's Acad. Title Assist. Lecture Module Leader's |            | ader's Q             | ualification                          | MSc          |                 |
| Module Tutor                    | Ali Qani Mohammed Saleh e-mail                              |            | e-mail               | ali.alkurdi23@ntu.edu.iq              |              |                 |
| Peer Reviewer Name Name         |                                                             | Name       | e-mail               | Email                                 | Email        |                 |
| Scientific Commi<br>Date        | ttee Approval                                               | 06/01/2023 | Version Number 1.0   |                                       |              |                 |

| Relation with other Modules |      |          |  |
|-----------------------------|------|----------|--|
| Prerequisite module         | None | Semester |  |

| Co-requisites module | None | Semester |  |
|----------------------|------|----------|--|

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        | 1. Develop a solid foundation in numerical concepts and techniques used in numerical analysis.                                                                                                                                 |  |  |
|                                                        | 2. Understand the principles and applications of numerical methods for solving engineering problems.                                                                                                                           |  |  |
| Module Objectives                                      | 3. Gain proficiency in using software tools and programming languages for numerical analysis.                                                                                                                                  |  |  |
|                                                        | 4. Acquire the skills to analyze and interpret numerical results to make informed engineering decisions.                                                                                                                       |  |  |
|                                                        | 5. Apply mathematical modeling techniques to solve real-world engineering problems.                                                                                                                                            |  |  |
|                                                        | The subject intended specific learning outcomes. On successfully completing the module students will be able to:                                                                                                               |  |  |
|                                                        | 1. Acquire a comprehensive understanding of the fundamental principles and concepts underlying a broad range of basic methods used in Numerical Analysis.                                                                      |  |  |
| Outcomes                                               | 2. Demonstrate proficiency in applying a variety of established techniques and effectively utilizing computational tools to solve engineering problems.                                                                        |  |  |
|                                                        | 3. Apply the acquired knowledge and skills in basic numerical approximation to<br>address complex problems in diverse contexts, demonstrating the ability to critically<br>assess and select appropriate tools and techniques. |  |  |
|                                                        | 4. Effectively employ MATLAB commands and functions to implement and execute<br>Numerical Analysis tasks, demonstrating competence in utilizing computational tools<br>for problem-solving.                                    |  |  |
|                                                        | Part A                                                                                                                                                                                                                         |  |  |
| Indicative Contents                                    | Introduction, Mathematical Analysis, Numerical Differentiation and Integration [20<br>hr.]                                                                                                                                     |  |  |
|                                                        | Numerical Solutions of Ordinary Differential Equations, Systems of Linear Equations [ 20 hr.]                                                                                                                                  |  |  |
|                                                        | Revision problem classes and quiz [3 hrs]                                                                                                                                                                                      |  |  |
| Part B                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------|
| Eigenvalues and Eigenvectors, Numerical Methods in Probability and Statistics, Numerical Methods for Control Systems [20 hr.] |

| Learning and Teaching Strategies<br>Learning and teaching strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Strategies                                                           | <ol> <li>Establish a solid foundation: Start by thoroughly understanding the fundamental concepts and principles of Numerical Analysis. This includes grasping the Numerical techniques and numerical methods commonly used in the field.</li> <li>Practice problem-solving: Numerical Analysis involves solving complex problems. Regularly practice solving a variety of problems to enhance your problem-solving skills and develop a deeper understanding of the subject matter.</li> <li>Utilize resources: Take advantage of textbooks, online resources, and reference materials specific to Numerical Analysis. These resources can provide additional explanations, examples, and practice problems to reinforce your understanding.</li> </ol> |  |

| Student Workload (SWL)<br>The student's academic load is calculated for 15 weeks. |    |                                                           |     |  |
|-----------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester             | 78 | Structured SWL (h/w)<br>Regular weekly student load       | 5.2 |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester         | 72 | Unstructured SWL (h/w)<br>Irregular student load per week | 4.8 |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester     |    | 150                                                       |     |  |

| Module Evaluation       |                |             |                  |            |                              |  |
|-------------------------|----------------|-------------|------------------|------------|------------------------------|--|
|                         |                | Time/Number | Weight (Marks)   | Week Due   | Relevant Learning<br>Outcome |  |
|                         | Quizzes        | 2           | 10% (10)         | 5 and 10   | LO 10, and #11               |  |
| Formative<br>assessment | Assignments    | 2           | 10% (10)         | 2 and 12   | LO #3, and #7                |  |
|                         | Projects /Lab. | 1           | 10% (10)         | Continuous | All                          |  |
|                         | Report         | 1           | 10% (10)         | 13         | LO #8                        |  |
| Summative               | Midterm Exam   | 2hr         | 10% (10)         | 7          | LO #1 - #7                   |  |
| assessment              | Final Exam     | 3hr         | 50% (50)         | 16         | All                          |  |
| Total assessment        |                |             | 100% (100 Marks) |            |                              |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                            |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                 | Material Covered                                                                                                                           |  |  |
| Week 1                          | Introduction to Numerical Analysis; Numerical analysis and its applications in engineering, Sources of error in numerical calculations     |  |  |
| Week 2                          | Numerical Methods for Solving Equations; Bisection method, Newton-Raphson method, Secant method                                            |  |  |
| Week 3                          | Interpolation and Approximation; Polynomial interpolation, Lagrange interpolation, Least squares approximation                             |  |  |
| Week 4                          | Numerical Differentiation and Integration; Forward, backward, and central difference approximations, Trapezoidal rule, Simpson's rule      |  |  |
| Week 5                          | Numerical Solutions of Ordinary Differential Equations; Euler's method, Runge-Kutta methods,<br>Multistep methods                          |  |  |
| Week 6                          | Systems of Linear Equations; Direct methods: Gaussian elimination, LU decomposition, Iterative methods: Jacobi method, Gauss-Seidel method |  |  |

| Week 7  | Eigenvalues and Eigenvectors; Power method, QR method                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 8  | Numerical Solutions of Partial Differential Equations; Finite difference methods, Finite element methods                                                           |
| Week 9  | Numerical Optimization; Unconstrained optimization: Golden section search, Newton's method,<br>Constrained optimization: Linear programming, quadratic programming |
| Week 10 | Numerical Methods for Data Analysis; Curve fitting, statistical regression                                                                                         |
| Week 11 | Numerical Methods in Probability and Statistics; Monte Carlo simulation, Numerical integration of probability density functions                                    |
| Week 12 | Numerical Methods for Signal Processing; Discrete Fourier transform, Fast Fourier transform                                                                        |
| Week 13 | Numerical Methods for Image Processing; Image enhancement techniques, Image restoration methods                                                                    |
| Week 14 | Numerical Methods for Control Systems; Numerical simulation of control, systems, model predictive control                                                          |
| Week 15 | Review and Project Presentations                                                                                                                                   |
| Week 16 | Preparatory week before the final exam                                                                                                                             |

| Delivery Plan (Weekly Lab. Syllabus) |                                                               |  |  |
|--------------------------------------|---------------------------------------------------------------|--|--|
|                                      | Material Covered                                              |  |  |
| Week 1                               | Lab 1: Introduction to Numerical Analysis and MATLAB.         |  |  |
| Week 2                               | Lab 2: Numerical Methods                                      |  |  |
| Week 3                               | Lab 3: Interpolation and Curve Fitting                        |  |  |
| Week 4                               | Lab 4: Numerical Integration                                  |  |  |
| Week 5                               | Lab 5: Numerical Solutions of Ordinary Differential Equations |  |  |

| Week 6 | Lab 6: Systems of Linear Equations                                                       |
|--------|------------------------------------------------------------------------------------------|
| Week 7 | Lab 7: Numerical Solutions of Partial Differential Equations; Finite difference methods, |

| Learning and Teaching Resources |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Available in the Library? |  |  |  |
| Required Texts                  | <ol> <li>"Numerical Analysis" by R.L. Burden and J.D. Faires:<br/>This book covers fundamental numerical methods and their<br/>applications in a concise and accessible manner.</li> <li>"Numerical Methods for Engineers" by SC Chapra and<br/>RP Canale: This textbook focuses on the practical aspects of<br/>numerical analysis and provides a wide range of examples<br/>and exercises.</li> </ol>                                                                                       | No                        |  |  |  |
| Recommended<br>Texts            | <ol> <li>"Numerical Analysis: Mathematics of Scientific<br/>Computing" by D. Kincaid and W. Cheney: This book<br/>emphasizes the mathematical foundations of numerical<br/>methods and includes rigorous analysis of algorithms.</li> <li>"Numerical Recipes: The Art of Scientific Computing"<br/>by WH Press et al.: This popular book provides a<br/>comprehensive collection of numerical algorithms, along<br/>with code implementation in various programming<br/>languages.</li> </ol> | No                        |  |  |  |
| Websites                        | <ol> <li>(https://www.mathworks.com/)</li> <li>(http://www.numericalmethods.eng.usf.edu/)</li> <li>(https://www.engineering.com/)</li> </ol>                                                                                                                                                                                                                                                                                                                                                  |                           |  |  |  |

## Level 4

| Module 34<br>Subject information      |              |                 |                              |                                       |                                                                          |
|---------------------------------------|--------------|-----------------|------------------------------|---------------------------------------|--------------------------------------------------------------------------|
| Module Title                          |              | Wind Energ      | Y                            |                                       |                                                                          |
| Module Type                           |              | Core            |                              | ⊠Theory                               |                                                                          |
| Module Code                           |              | <b>RETE 400</b> |                              | □ Lecture<br>⊠ Lab                    |                                                                          |
| ECTS Credits                          | 5            |                 |                              |                                       |                                                                          |
| SWL (hr/sem)                          | 125          |                 |                              | $\square$ Practical $\square$ Seminar |                                                                          |
| Module Level                          |              | 4               | Semester of D                | Delivery                              | 7                                                                        |
| Administration Department             |              | RETE            | College                      | College of<br>Engineering -           | Oil and Gas Techniques<br>Kirkuk, Northern Technical<br>University, Iraq |
| Module Leader                         | Afrah Tur    | ki Awad         | e-mail                       | afrah.turki@r                         | ntu.edu.iq                                                               |
| Module Leader's Acad. Title           |              | Lecturer        | Module Lead<br>Qualification | er's                                  | PhD                                                                      |
| Module Tutor                          | Module Tutor |                 | e-mail                       |                                       |                                                                          |
| Peer Reviewer Name                    |              |                 | e-mail                       |                                       |                                                                          |
| Scientific Committee Approval<br>Date |              |                 | Version<br>Number            |                                       |                                                                          |

| Relation with other Modules                            |                                                                                                                                                                                                                                                                                                                                           |      |          |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--|
| Prerequisite module                                    |                                                                                                                                                                                                                                                                                                                                           | None | Semester |  |
| Co-requisites module                                   |                                                                                                                                                                                                                                                                                                                                           | None | Semester |  |
| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                                                           |      |          |  |
| Module Aims                                            | Wind energy is the fast growing renewable source for electricity generation. The objective of this course is to present a broad overview of the technology covering aspects such as the history of wind turbine development, the characteristics of the wind and its impact on site selection, and the design, manufacture, and operation |      |          |  |

|                             | of modern wind turbines. The course has a practical flavour, drawing on examples<br>from the wind turbine engineering and development sectors. The political and<br>economic implications of wind energy are explored in the final lecture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Module Learning<br>Outcomes | <ul> <li>On completion of this module the student will:</li> <li>i) be capable of conducting a basic wind resource estimation and site assessment.</li> <li>ii) Understand the fundamentals of wind turbine design and operation</li> <li>iii) understand issues related to integrating wind energy into an electricity distribution network</li> <li>iv) appreciate the strengths and limitations of wind energy in an economic and political context</li> </ul>                                                                                                                                                                                                                                                      |  |  |  |  |
| Indicative Contents         | <ul> <li>A wind turbine module typically focuses on a specific aspect or subset of topics related to wind energy systems. Modules are usually part of a larger course or program and provide in-depth knowledge and skills in a particular area. Here are some indicative contents that might be included in a wind turbine module:</li> <li>1. Introduction to Wind Turbine Technology.</li> <li>2. Wind Turbine Aerodynamics.</li> <li>3. Wind Energy Conversion Systems.</li> <li>4. Wind Resource Assessment.</li> <li>5. Structural Analysis and Design.</li> <li>6. Operation and Maintenance.</li> <li>7. Grid Integration and Electrical Systems.</li> <li>8. Environmental Impact and Regulations.</li> </ul> |  |  |  |  |

| Learning and Teaching Strategies |                                                                                                                                      |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Strategies                       | Teaching Method 1 - Lectures<br>Description:<br>Attendance Recorded: Yes<br>Teaching Method 2 - Asynchronous online course materials |  |

| Description: Podcasts, videos, and articles on Renewable Energy<br>Attendance Recorded: No                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unscheduled Directed Student Hours (time spent away from the timetabled sessions but directed by the teaching staff).                                                                                                               |
| Teaching Method 3 - Tutorials<br>Description:<br>Attendance Recorded: Yes                                                                                                                                                           |
| Teaching Method 4 - Practical<br>Description: Practical homework assignments<br>Attendance Recorded: No<br>Unscheduled Directed Student Hours (time spent away from the timetabled<br>sessions but directed by the teaching staff). |

| Student Workload (SWL)                                                        |     |                                                           |      |  |
|-------------------------------------------------------------------------------|-----|-----------------------------------------------------------|------|--|
| Structured SWL (h/sem)<br>Regular student load during the semester            | 63  | Structured SWL (h/w)<br>Regular weekly student load       | 4.2  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the semester        | 62  | Unstructured SWL (h/w)<br>Irregular student load per week | 4.13 |  |
| Total SWL (h/sem)<br>The student's total academic load during<br>the semester | 125 |                                                           |      |  |

| Module Evaluation |               |             |                   |            |                              |
|-------------------|---------------|-------------|-------------------|------------|------------------------------|
|                   |               | Time/Number | Weight<br>(Marks) | Week Due   | Relevant Learning<br>Outcome |
|                   | Quizzes       | 4           | 10% (10)          | 5, 10      | LO #1 and 2                  |
| Formative         | Seminar       | 2           | 10% (10)          | Continuous | All                          |
| assessment        | Lab Report    | 5           | 20% (20)          | 2,6,12,14  | LO # 3,4,8,12                |
| Summativo         | Mid Term exam | 2 hours     | 10% (10)          | 11         | LO #1-3                      |
| assessment        | Final Exam    | 3hr         | 50% (50)          | 16         | All                          |
| 100% (100 Marks)  |               |             |                   |            |                              |

| Delivery Plan (Weekly Syllabus) |                                   |  |
|---------------------------------|-----------------------------------|--|
| Week 1                          | Background of wind turbines       |  |
| Weeks (2 - 3)                   | Evolution of modern wind turbines |  |
| Weeks (4 - 5)                   | The wind and its characteristics  |  |

| Week 6  | Wind Turbine Aerodynamics            |
|---------|--------------------------------------|
| Week 7  | Structural design and analysis       |
| Week 8  | Electrical Aspects                   |
| Week 9  | Wind turbine control and operation   |
| Week 10 | materials and manufacture            |
| Week 11 | Mid-Term Exam                        |
| Week 12 | Planning and Siting                  |
| Week 13 | Construction and offshore wind       |
| Week 14 | Politics, economics and case studies |
| Week 15 | Preparing for the final exam         |

| Learning and Teaching Resources |                                                      |                           |  |  |
|---------------------------------|------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                 | Available in the Library? |  |  |
| Required Texts                  | Wind Energy Explained, Manwell, McGowan and Rogers,  | No                        |  |  |
|                                 | Wiley 2002, ISBN 0 471 49972 2                       |                           |  |  |
|                                 | Wind Energy Handbook, Burton, Sharpe, Jenkins and    | No                        |  |  |
|                                 | Bossanyi; Wiley, 2001, ISBN 0 471 48997 2            |                           |  |  |
|                                 | Renewable Energy in Power Systems, Freris & Infield; | No                        |  |  |
|                                 | Wiley, 2008, ISBN 978 0 471 01749 4                  |                           |  |  |

| Module 35<br>Subject information |                 |                 |                    |   |  |
|----------------------------------|-----------------|-----------------|--------------------|---|--|
| Module Title                     | Photov          | oltaic Energy ( | Conversion         |   |  |
| Module Type                      | Core            |                 | ⊠Theory            |   |  |
| Module Code                      | <b>RETE 401</b> |                 | □ Lecture<br>□ Lab |   |  |
| ECTS Credits                     | 5               |                 |                    |   |  |
| SWL (hr/sem)                     | 125             |                 | Seminar            |   |  |
| Module Level                     | 4 Semester of   |                 | Delivery           | 7 |  |

| Administration Department       |                  | RETE     | College                       | College of<br>- Engineering<br>ا | Oil and Gas Techniques<br>Kirkuk, Northern Technical<br>Jniversity, Iraq |
|---------------------------------|------------------|----------|-------------------------------|----------------------------------|--------------------------------------------------------------------------|
| Module Leader                   | Afrah Turki Awad |          | e-mail                        | afrah.turki@ntu.edu.iq           |                                                                          |
| Module Leader's Acad. Title Lec |                  | Lecturer | Module Leade<br>Qualification | er's                             | PhD                                                                      |
| Module Tutor                    |                  |          | e-mail                        |                                  |                                                                          |
| Peer Reviewer Name              |                  | e-mail   |                               |                                  |                                                                          |
| Scientific Committee Approval   |                  | Version  |                               |                                  |                                                                          |
| Date                            |                  |          | number                        |                                  |                                                                          |

| Relation with other Modules |               |          |   |  |
|-----------------------------|---------------|----------|---|--|
| Prerequisite module         | RETE 305      | Semester | 6 |  |
| Co-requisites module        | None Semester |          |   |  |

| Module Aims | , Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims | The module "Photovoltaic Energy Conversion" is designed with several key aims to<br>provide students with a comprehensive understanding of the principles and<br>applications of photovoltaic technology. Firstly, the module aims to establish a<br>strong foundation in the fundamental principles of photovoltaic energy conversion,<br>including semiconductor physics and the photovoltaic effect. Students will explore<br>various photovoltaic technologies, delving into the intricacies of different types of<br>solar cells and understanding their specific applications and limitations. Moreover,<br>the module aims to equip students with practical skills in designing and evaluating<br>photovoltaic systems for diverse purposes, such as residential, commercial, and<br>utility-scale applications. Emphasis is placed on integrating energy storage<br>solutions to enhance the reliability of photovoltaic systems and promote grid<br>stability. Additionally, the module aims to foster an understanding of the economic<br>and environmental aspects of photovoltaic energy, encouraging students to<br>analyze the cost-effectiveness of solar energy solutions and consider sustainable<br>practices in the industry. By promoting problem-solving skills, encouraging<br>research endeavors, and emphasizing the significance of grid integration and<br>societal impact, this module aims to prepare students for careers in the rapidly<br>evolving field of photovoltaic energy conversion, equipping them to contribute |

|                             | meaningfully to the renewable energy sector and address the challenges of a sustainable energy future.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                             | Upon completing the course, students should be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Module Learning<br>Outcomes | <ul> <li>meaningfully to the renewable energy sector and address the challenges of a sustainable energy future.</li> <li>Upon completing the course, students should be able to:</li> <li>1. Understand Photovoltaic Principles: Demonstrate a deep understanding of the underlying principles photovoltaic energy conversion, including semiconductor physics, the photovoltaic effect, and the operation of solar cells.</li> <li>2. Evaluate Solar Cell Technologies: Analyze and compare various types of solar cells, including monocrystalline, polycrystalline, and thin-film technologies, considering their efficiency, materials, and applications.</li> <li>3. Assess Solar Radiation: Evaluate solar radiation data and understand its significance in photovoltaic system design, including site-specific considerations, shading analysis, and tilt optimization.</li> <li>4. Design Photovoltaic Systems: Design photovoltaic systems for different scales of applications, considering energy demands, system sizing, orientation, and integration techniques such as inverters and charge controllers.</li> <li>5. Integrate Energy Storage Solutions: Integrate energy storage solutions, including batteries, into photovoltaic systems, ensuring effective energy management, load balancing, and grid stability.</li> <li>6. Analyze Balance of System Components: Understand and analyze balance of system components such as wiring, fuses, and grounding systems, ensuring the safe and efficient operation of photovoltaic installations.</li> <li>7. Perform System Simulation: Utilize software tools for system simulation, analyze the performance of photovoltaic systems under various conditions, and optimize for maximum efficiency and reliability.</li> <li>8. Evaluate Environmental and Economic Aspects: Assess the environmental impact of photovoltaic technologies, considering life cycle analysis and carbon footprint. Conduct economic evaluations, including cost-benefit analysis, payback periods, and return on invertment alone.</li> </ul> |  |  |  |  |
|                             | <ol> <li>Investment calculations.</li> <li>Troubleshoot and Maintain Systems: Develop skills in diagnosing and troubleshooting common issues in photocoltaic systems.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                             | <ol> <li>Troubleshoot and Maintain Systems: Develop skills in diagnosing<br/>and troubleshooting common issues in photovoltaic systems.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                             | sustainability and efficiency of installations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                             | 10. Apply Regulatory and Safety Standards: Apply knowledge of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                             | national and international regulatory standards, codes, and relevant safety practices to photovoltaic energy systems. ensuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                             | compliance and safe operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

|                     | <ol> <li>Communicate Effectively: Present technical information related to<br/>photovoltaic energy conversion clearly and effectively, both in<br/>written reports and oral presentations, demonstrating effective<br/>communication skills.</li> <li>Work in Interdisciplinary Teams: Collaborate effectively in<br/>interdisciplinary teams, integrating knowledge from engineering,<br/>environmental science, and economics to address complex<br/>challenges in photovoltaic energy conversion.</li> <li>These Module Learning Outcomes are designed to equip students<br/>with a comprehensive skill set and knowledge base, enabling them<br/>to excel in the design, implementation, and evaluation of<br/>photovoltaic energy systems.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | This module encompasses a wide range of indicative contents designed to<br>provide students with a deep understanding of solar energy technology<br>and its practical applications. The curriculum begins with fundamental<br>concepts in semiconductor physics, elucidating the principles underlying<br>the photovoltaic effect. Students delve into the study of various types of<br>solar cells, including monocrystalline, polycrystalline, and thin-film<br>technologies, understanding their structures, materials, and efficiency<br>factors. The module covers solar radiation analysis, emphasizing the<br>importance of understanding the local solar resource for effective system<br>design. Additionally, students explore the intricacies of solar module<br>construction and characterization, gaining insights into the manufacturing<br>processes and quality control standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Indicative Contents | A significant portion of the module is dedicated to photovoltaic system<br>design and integration. Students learn the art of sizing photovoltaic<br>systems based on energy demands, considering factors like shading, tilt,<br>and orientation. Grid integration techniques, including inverters and<br>energy storage solutions, are thoroughly explored to ensure seamless<br>integration into existing electrical systems. The curriculum also includes an<br>in-depth analysis of the balance of system components such as charge<br>controllers, batteries, and wiring, ensuring students grasp the holistic view<br>of photovoltaic installations. Moreover, the module delves into practical<br>aspects of photovoltaic energy conversion, including hands-on lab sessions<br>for solar cell efficiency measurements, system simulation exercises, and<br>troubleshooting scenarios. Environmental and economic considerations<br>are incorporated, encouraging students to evaluate the life cycle analysis,<br>carbon footprint, and cost-benefit aspects of photovoltaic projects. Case<br>studies and real-world applications supplement theoretical knowledge,<br>providing students with valuable insights into successful photovoltaic<br>installations across various contexts. Overall, the indicative contents of the<br>module offer a well-rounded education in photovoltaic energy conversion, |

| preparing students for careers in solar energy research, design, and |
|----------------------------------------------------------------------|
| implementation.                                                      |

| L          | Learning and Teaching Strategies                                         |  |  |  |  |
|------------|--------------------------------------------------------------------------|--|--|--|--|
|            | Teaching Method 1 - Lectures                                             |  |  |  |  |
|            | Description:                                                             |  |  |  |  |
|            | Attendance Recorded: Yes                                                 |  |  |  |  |
|            | Teaching Method 2 - Asynchronous online module materials                 |  |  |  |  |
|            | Description: Podcasts, videos, and articles on Renewable Energy          |  |  |  |  |
|            | Attendance Recorded: No                                                  |  |  |  |  |
|            | Unscheduled Directed Student Hours (time spent away from the timetabled  |  |  |  |  |
| Strategies | sessions but directed by the teaching staff).                            |  |  |  |  |
|            | Teaching Method 3 - Tutorials                                            |  |  |  |  |
|            | Description:                                                             |  |  |  |  |
|            | Attendance Recorded: Yes                                                 |  |  |  |  |
|            | Teaching Method 4 - Practical                                            |  |  |  |  |
|            | Description: Practical homework assignments                              |  |  |  |  |
|            | Attendance Recorded: No                                                  |  |  |  |  |
|            | Unschool and Directed Student Hours (time spont away from the timetabled |  |  |  |  |
|            | Unscheduled Directed Student Hours (time spent away from the timetabled  |  |  |  |  |
|            | sessions but directed by the teaching staff).                            |  |  |  |  |

| Student Workload (SWL)                     |    |                                 |      |  |  |
|--------------------------------------------|----|---------------------------------|------|--|--|
| Structured SWL (h/sem)                     |    | Structured SWL (h/w)            | 4.2  |  |  |
| Regular student load during the semester   |    | Regular weekly student load     |      |  |  |
| Unstructured SWL (h/sem)                   | 62 | Unstructured SWL (h/w)          | 1 12 |  |  |
| Irregular student load during the semester | 02 | Irregular student load per week | 4.15 |  |  |
| Total SWL (h/sem)                          |    |                                 |      |  |  |
| The student's total academic load during   |    | 125                             |      |  |  |
| the semester                               |    |                                 |      |  |  |

| Module Evaluation                                                               |         |   |          |             |                    |
|---------------------------------------------------------------------------------|---------|---|----------|-------------|--------------------|
| Time/Number     Weight<br>(Marks)     Week Due     Relevant Learning<br>Outcome |         |   |          |             |                    |
|                                                                                 | Quizzes | 4 | 20% (20) | 2, 5, 8, 10 | LO #1, 4, 9 and 13 |
| Formative<br>assessment                                                         | Seminar | 2 | 10% (10) | Continuous  | All                |

|                  | Lab Report    | 5       | 10% (10) | 2,6,12,14 | LO # 3,4,8,12 |
|------------------|---------------|---------|----------|-----------|---------------|
| Summativo        | Mid Term exam | 2 hours | 10% (10) | 9         | LO #1-11      |
| assessment       | Final Exam    | 3hr     | 50% (50) | 16        | All           |
| 100% (100 Marks) |               |         |          |           |               |

|             | Delivery Plan (Weekly Syllabus)                                                                                                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Introduction to Photovoltaic Energy                                                                                                                                                                                                                                                                                             |
| Weeks (1-2) | <ul> <li>Overview of renewable energy sources</li> <li>Importance and applications of photovoltaic energy</li> <li>Historical development of photovoltaic technology</li> <li>Basic concepts of semiconductor physics relevant to solar cells</li> </ul>                                                                        |
|             | Solar Radiation and Solar Cells                                                                                                                                                                                                                                                                                                 |
| Week 3      | <ul> <li>Solar radiation: measurement and data analysis</li> <li>Solar cell structure and operation</li> <li>Different types of solar cells: monocrystalline, polycrystalline, thin-film, and emerging technologies</li> <li>Efficiency factors and characteristics of solar cells</li> </ul>                                   |
| Week 4      | <ul> <li>Photovoltaic System Components</li> <li>PV modules: construction, characterization, and testing</li> <li>Inverters, charge controllers, and batteries in PV systems</li> <li>Balance of system components: wiring, fuses, and grounding</li> <li>Energy storage solutions: types and integration techniques</li> </ul> |
|             | Photovoltaic System Design                                                                                                                                                                                                                                                                                                      |
| Weeks (5-6) | <ul> <li>Site assessment and solar resource analysis</li> <li>System sizing: load estimation, energy production calculation</li> <li>System configuration and layout for different applications</li> <li>Grid-connected vs. off-grid PV systems: design considerations</li> </ul>                                               |
|             | Grid Integration and Power Electronics                                                                                                                                                                                                                                                                                          |
| Weeks (7-8) | <ul> <li>Grid-tied PV systems: net metering, grid integration standards</li> <li>Power electronics in PV systems: DC-DC converters, inverters, and maximum power point tracking (MPPT)</li> </ul>                                                                                                                               |

|               | Microgrid and smart grid technologies in solar energy integration                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Week 9        | Mid-Term Exam                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Weeks (10-11) | <ul> <li>Energy Storage and System Simulation</li> <li>Energy storage technologies: batteries, thermal storage</li> <li>System simulation tools: modeling and performance prediction</li> <li>Hands-on simulation exercises: analyzing PV system performance under various conditions</li> </ul>                                                                                      |  |  |  |  |
| Weeks (12-14) | <ul> <li>Economic and Environmental Aspects</li> <li>Economic analysis of PV systems: cost-benefit analysis, payback periods, return on investment</li> <li>Environmental impact assessment: life cycle analysis, carbon footprint</li> <li>Case studies of successful PV installations</li> <li>Future trends and emerging technologies in photovoltaic energy conversion</li> </ul> |  |  |  |  |
| Week 15       | Preparing for the final exam                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |

| Learning and Teaching Resources |                                                       |                           |  |  |  |
|---------------------------------|-------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                  | Available in the Library? |  |  |  |
| Required Texts                  | Reinders, A., Verlinden, P., Van Sark, W. and         | No                        |  |  |  |
|                                 | Freundlich, A., 2017. Photovoltaic solar energy: from |                           |  |  |  |
|                                 | fundamentals to applications. John Wiley & Sons.      |                           |  |  |  |
|                                 | Lasnier, F., 2017. Photovoltaic engineering handbook. | No                        |  |  |  |
|                                 | Routledge.                                            |                           |  |  |  |

| Module 36<br>Subject information |                                           |                    |  |  |  |
|----------------------------------|-------------------------------------------|--------------------|--|--|--|
| Module Title                     | Simulation of renewable energy<br>systems |                    |  |  |  |
| Module Type                      | Core                                      | ⊠Theory            |  |  |  |
| Module Code                      | <b>RETE 402</b>                           | □ Lecture<br>⊠ Lab |  |  |  |
| ECTS Credits                     | 6                                         | ⊠ Tutorial         |  |  |  |

| SWL (hr/sem)                          | 150                        |          | <ul> <li>□ Practical</li> <li>□ Seminar</li> </ul> |                                                      |      |
|---------------------------------------|----------------------------|----------|----------------------------------------------------|------------------------------------------------------|------|
| Module Level                          |                            | 4        | Semester of Delivery                               |                                                      | 7    |
| Administration Department             |                            | RETE     | College                                            | College of Oil & Gas Technique<br>Engineering/Kirkuk |      |
| Module Leader                         | Ali Qani Mohammed<br>Saleh |          | e-mail                                             | ali.alkurdi23@ntu.edu.ig                             |      |
| Module Leader's Acad. Title           |                            | Lecturer | Module Lead<br>Qualification                       | er's                                                 | MSc. |
| Module Tutor Name (if available)      |                            | e-mail   |                                                    |                                                      |      |
| Peer Reviewer Name                    |                            |          | e-mail                                             |                                                      |      |
| Scientific Committee Approval<br>Date |                            |          | Version<br>Number                                  | 1                                                    |      |

| Relation with other Modules        |          |          |   |  |  |  |
|------------------------------------|----------|----------|---|--|--|--|
| Prerequisite module                | RETE 302 | Semester | 5 |  |  |  |
| Co-requisites module None Semester |          |          |   |  |  |  |

| Module Aim                  | Module Aims, Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Module Aims                 | <ol> <li>Simulation Proficiency: The aim of this module is to equip students with the knowledge and skills required to proficiently simulate and model the behavior of renewable energy systems. Students should be able to create accurate mathematical models of these systems and use simulation techniques to analyze their performance effectively.</li> <li>Assessment and Optimization: The module aims to enable students to assess the efficiency and reliability of renewable energy systems through simulations. Students should gain the ability to identify opportunities for optimization and make informed decisions to enhance the performance of these systems.</li> <li>Real-World Application: By the end of the module, students should be capable of applying simulation techniques to practical scenarios in the renewable energy sector. They will gain the competence to address real-world challenges and evaluate the impact of different factors on system behavior, making them valuable contributors to the renewable energy industry.</li> </ol> |  |  |  |  |  |
| Module Learning<br>Outcomes | (LO9). Model Development: Students will be able to develop<br>mathematical models that accurately represent the behavior and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |

| <ul> <li>components of various renewable energy systems, including solar, wind, and hydropower.</li> <li>(L010). Simulation Proficiency: Upon completion of the module, students will possess the skills to use simulation software and tools to create detailed and dynamic models of renewable energy systems.</li> <li>(L011). Data Collection and Analysis: Students will learn to gather relevant data, perform data analysis, and integrate data into their simulation models to ensure realistic system behavior.</li> <li>(L012). Performance Evaluation: The module will equip students to assess the performance of renewable energy systems under various conditions and scenarios, enabling them to identify areas for improvement.</li> <li>(L013). Optimization Techniques: Students will gain knowledge of optimization methods and strategies to enhance the efficiency and reliability of renewable energy systems, considering factors such as resource availability and load demand.</li> <li>(L014). System Integration: Students will understand how to simulate the integration of renewable energy systems into the wider energy solutions.</li> <li>(L015). Sensitivity Analysis: Graduates of the module will be proficient in conducting sensitivity analyzes to evaluate the impact of different variables and parameters on system performance and behavior.</li> <li>(L016). Scenario Plannig: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems. Indifferent conditions, including extreme eveather events or changing energy demands.</li> <li>(L017). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.</li> <li>(L018). Practical Applications: Upon completion, students should be able to engry by their simulation skills to practical situations in the renewable energy systems<!--</th--><th></th><th></th></li></ul>                                                  |                     |                                                                                       |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <ul> <li>Indicipose:</li> <li>Simulation Proficiency: Upon completion of the module, students will possess the skills to use simulation software and tools to create detailed and dynamic models of renewable energy systems.</li> <li>(L011). Data Collection and Analysis: Students will learn to gather relevant data, performance frankable energy systems under various conditions and scenarios, enabling them to identify areas for improvement.</li> <li>(L013). Optimization Techniques: Students will gain knowledge of optimization methods and strategies to enhance the efficiency and reliability of renewable energy systems, considering factors such as resource availability and load demand.</li> <li>(L014). System Integration: Students will understand how to simulate the integration of renewable energy systems into the wider energy infrastructure, taking into account grid compatibility and energy storage solutions.</li> <li>(L016). Scenario Planning: Students will understand how to simulate the inclustry singerstructure, taking into account grid compatibility and parameters on system performance and behavior.</li> <li>(L016). Scenario Planning: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.</li> <li>(L017). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.</li> <li>(L018). Practical Applications: Upon completion, students should be able to effectively communicate the following.</li> <li>Introduction to Simulation</li> <li>Definition and importance of simulation</li> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy balance equations of renewable energy systems</li> <l< th=""><th></th><th>components of various renewable energy systems, including solar, wind,</th></l<></ul> |                     | components of various renewable energy systems, including solar, wind,                |  |  |  |  |  |  |
| <ul> <li>Indicative Proficiency - update Completion of the module, students will posses the skills to use simulation software and tools to create detailed and dynamic models of renewable energy systems.</li> <li>(LO11). Data Collection and Analysis: Students will learn to gather relevant data, perform data analysis, and integrate data into their simulation models to ensure realistic system behavior.</li> <li>(LO12). Performance Evaluation: The module will equip students to assess the performance of renewable energy systems under various conditions and scenarios, enabling them to identify areas for improvement.</li> <li>(LO13). Optimization Techniques: Students will gain knowledge of optimization methods and strategies to enhance the efficiency and reliability of renewable energy systems, considering factors such as resource availability and load demand.</li> <li>(LO14). System Integration: Students will understand how to simulate the integration of renewable energy systems into the wider energy infrastructure, taking into account grid compatibility and energy storage solutions.</li> <li>(LO15). Sensitivity Analysis: Graduates of the module will be proficient in conducting sensitivity analyzes to evaluate the impact of different variables and parameters on system performance and behavior.</li> <li>(LO17). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.</li> <li>(LO18). Practical Applications: Upon completion, students should be able to apply their simulation is to reace of simulation of real-world renewable energy systems</li> <li>Indicative content includes the following.</li> <li>Introduction to Simulation</li> <li>Role of simulation in renewable energy systems</li> <li>Mathematical Modeling</li> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy b</li></ul>                                                                                                 |                     | (LO10) Simulation Profisionary Linen completion of the module students                |  |  |  |  |  |  |
| <ul> <li>Indicative Contents</li> <li>Solar Energy System Simulation Solution Solution</li> <li>Indicative Contents</li> <li>Solar Energy System Simulation Solution</li> <li>Indicative Contents</li> <li>Solar Energy System Simulation Solution</li> <li>Introduction to simulation solution</li> <li>Solar Energy System Simulation Solutis Solution</li> <li>Solar Energy System Simulation</li></ul>                                                                                                                                                                                                                                               |                     | (LOTO). Simulation Pronciency. Opon completion of the module, students                |  |  |  |  |  |  |
| <ul> <li>Indicative Contents</li> <li>Indicative Contents&lt;</li></ul>                                                                                                                                                                                                                                                                                          |                     | will possess the skills to use simulation software and tools to create                |  |  |  |  |  |  |
| ID11). Data Collection and Analysis Students will equip student to gather relevant data analysis, and integrate data into their simulation models to ensure realistic system behavior.         (ID12). Performance of renewable energy systems under various conditions and scenarios, enabling them to identify areas for improvement.         (ID13). Optimization Techniques: Students will gain knowledge of optimization methods and strategies to enhance the efficiency and reliability of renewable energy systems, considering factors such as resource availability and load demand.         (ID14). System Integration: Students will understand how to simulate the integration of renewable energy systems into the wider energy infrastructure, taking into account grid compatibility and energy storage solutions.         (ID15). Sensitivity Analysis: Graduates of the module will be proficient in conducting sensitivity analyses to evaluate the impact of different variables and parameters on system performance and behavior.         (ID16). Scenario Planning: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.         (ID17). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.         (ID18). Practical Applications: Upon completion, students should be able to apply their simulation skills to practical struations in the renewable energy sector, contributing to the design, analysis, and optimization of real-world renewable energy sector.         Indicative Contents                                                                                                                                                                                                                                                                                                      |                     | detailed and dynamic models of renewable energy systems.                              |  |  |  |  |  |  |
| Indicative Contents         Indicative Conten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | (LOTI). Data collection and Analysis: students will learn to gather relev             |  |  |  |  |  |  |
| Indicative Contents         Indicatis Indicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | data, perform data analysis, and integrate data into their simulation                 |  |  |  |  |  |  |
| <ul> <li>ILO12). Performance Evaluation: The module will equip students to assess the performance of renewable energy systems under various conditions and scenarios, enabling them to identify areas for improvement.</li> <li>(LO13). Optimization Techniques: Students will gain knowledge of optimization methods and strategies to enhance the efficiency and reliability of renewable energy systems, considering factors such as resource availability and load demand.</li> <li>(LO14). System Integration: Students will understand how to simulate the integration of renewable energy systems into the wider energy infrastructure, taking into account grid compatibility and energy storage solutions.</li> <li>(LO15). Sensitivity analysis: Graduates of the module will be proficient in conducting sensitivity analyzes to evaluate the impact of different variables and parameters on system performance and behavior.</li> <li>(LO16). Scenario Planning: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.</li> <li>(LO17). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.</li> <li>(LO18). Practical Applications: Upon completion, students should be able to eaply their simulation in renewable energy systems</li> <li>Indicative Contents</li> <li>Mathematical Modeling         <ul> <li>Definition and importance of simulation</li> <li>Role of simulation</li> <li>Definition and importance of simulation</li> <li>Energy balance equations for renewable systems</li> <li>Mathematical Modeling             <ul> <li>Differential equations for renewable systems</li> <li>Simulation Software and Tools</li></ul></li></ul></li></ul>                                                                                                                                              |                     | models to ensure realistic system behavior.                                           |  |  |  |  |  |  |
| Indicative Contents         Indicative Conten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | (LO12). Performance Evaluation: The module will equip students to assess              |  |  |  |  |  |  |
| Indicative Contents         Indicative Contenthic Contentin Contain provide Content Incotent Simula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | the performance of renewable energy systems under various conditions                  |  |  |  |  |  |  |
| Indicative Contents <ul> <li>(L013). Optimization Techniques: Students will gain knowledge of optimization methods and strategies to enhance the efficiency and reliability of renewable energy systems, considering factors such as resource availability and load demand.</li> <li>(L014). System Integration: Students will understand how to simulate the integration of renewable energy systems into the wider energy infrastructure, taking into account grid compatibility and energy storage solutions.</li> <li>(L015). Sensitivity Analysis: Graduates of the module will be proficient in conducting sensitivity analyzes to evaluate the impact of different variables and parameters on system performance and behavior.</li> <li>(L016). Scenario Planning: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.</li> <li>(L017). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.</li> <li>(L018). Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy sector, contributing to the design, analysis, and optimization of real-world enewable energy systems</li> <li>Indicative content includes the following.</li> <li>Introduction to Simulation</li> <li>Definition and importance of simulation</li> <li>Role of simulation in renewable energy systems</li> <li>Mathematical Modeling</li> <li>Basics of mathematical modeling</li> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li></ul>                                                                                                                                                                                                                                                                       |                     | and scenarios, enabling them to identify areas for improvement.                       |  |  |  |  |  |  |
| Indicative Contents       optimization methods and strategies to enhance the efficiency and reliability of renewable energy systems, considering factors such as resource availability and load demand.         (L014).       System Integration: Students will understand how to simulate the integration of renewable energy systems into the wider energy infrastructure, taking into account grid compatibility and energy storage solutions.         (L015).       Sensitivity Analysis: Graduates of the module will be proficient in conducting sensitivity analyzes to evaluate the impact of different variables and parameters on system performance and behavior.         (L016).       Scenario Planning: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.         (L017).       Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.         (L018).       Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy vector, contributing to the design, analysis, and optimization of real-world renewable energy projects.         Indicative Contents       Indication on importance of simulation         • Basics of mathematical Modeling       • Basics of mathematical modeling         • Introduction to Simulation in renewable energy systems       • Simulation Software and Tools         • Bas                                                                                                                                                                                                                                                                                                                                                                                                         |                     | (LO13). Optimization Techniques: Students will gain knowledge of                      |  |  |  |  |  |  |
| Indicative Contents         Introduction to simulation to simulation to simulate the content simulation to the proficient in the proficient profile provide the profile provide                                                                                                                                                                                                                                                                                                                        |                     | optimization methods and strategies to enhance the efficiency and                     |  |  |  |  |  |  |
| Indicative Contents       Indicative Contents         Indicative Contents       Indicative Contents         Indicative Contents       Indicative content includes the following.         Indicative Contents       Indicative content includes the following.         Indicative Contents       Introduction to simulation in renewable energy systems         Introduction to simulation in renewable energy systems       Introduction to simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.         (LO17).       Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.         (LO18).       Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy systems.         Indicative content includes the following.       Indicative content includes the following.         Indicative Contents       Indicative content includes and system representation         Introduction to Simulation in renewable energy systems       Indicative content includes the following.         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative to the design analysis, and optimization of real-world renewable energy systems       Indicative contenergy following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | reliability of renewable energy systems, considering factors such as                  |  |  |  |  |  |  |
| Indicative Contents <ul> <li>Indicative Contents</li> <li>Introduction to Simulation in renewable energy systems</li> <li>Indicative Contents</li> <li>Introduction to simulation software (eg. Python, MATLAB/Simulink, RET Screen)</li> <li>Introduction to simulation software (eg. Python, MATLAB/Simulink, RET Screen)</li> <li>Introduction to simulation in colusion software (eg. Python, MATLAB/Simulink, RET Screen)</li> <li>Indecing System modeling</li> <li>Solar Hermal System modeling</li> <li>Solar thermal System modeling</li> <li>Solar thermal System mod</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | resource availability and load demand.                                                |  |  |  |  |  |  |
| Integration of renewable energy systems into the wider energy infrastructure, taking into account grid compatibility and energy storage solutions.         (L015).       Sensitivity Analysis: Graduates of the module will be proficient in conducting sensitivity analyzes to evaluate the impact of different variables and parameters on system performance and behavior.         (L016).       Scenario Planning: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.         (L017).       Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.         (L018).       Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy systems.         Indicative Contents       Indicont to Simulation         Indicative Contents <ul> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> <li>Simulation Software and Tools</li> <li>Indroduction to simulation</li> <li>Basics of rustner and Tools</li> <li>Solar Energy System Simulation</li> <li>Solar thermal system modeling</li> <li>Solar thermal system model</li></ul>                                                                                                                                                                                                                                                                                                                                                                                       |                     | (LO14). System Integration: Students will understand how to simulate the              |  |  |  |  |  |  |
| Infrastructure, taking into account grid compatibility and energy storage solutions.         (L015).       Sensitivity Analysis: Graduates of the module will be proficient in conducting sensitivity analyzes to evaluate the impact of different variables and parameters on system performance and behavior.         (L016).       Scenario Planning: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.         (L017).       Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.         (L018).       Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy sector, contributing to the design, analysis, and optimization of real-world renewable energy projects.         Indicative content includes the following.       Introduction to Simulation         •       Definition and importance of simulation         •       Role of simulation in renewable energy systems         •       Mathematical Modeling         •       Differential equations and system representation         •       Energy balance equations offware (eg, Python, MATLAB/Simulink, RET Screen)         •       Hands-on training with simulation tools         •       Solar therry System Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | integration of renewable energy systems into the wider energy                         |  |  |  |  |  |  |
| Indicative Contents       Indicative Contents         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)         Introduction Apy system modeling       Introduction software (eg, Python, MATLAB/Simulink, RET Screen)         Introduction Apy system modeling       Introduction software (eg, Python, MATLAB/Simulink, RET Screen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | infrastructure, taking into account grid compatibility and energy storage             |  |  |  |  |  |  |
| Indicative Contents <ul> <li>Indicative Contents</li> <li>Indicative Contents</li> <li>Indicative Contents</li> <li>Indicative Contents</li> </ul> <li>Indicative Contents</li> <li>Introduction to simulation software (eg. Python, MATLAB/Simulink, RET Screen)</li> <li>Introduction to simulation software (eg. Python, MATLAB/Simulink, RET Screen)</li> <li>Introduction to Simulation tools</li> <li>Solar PP System Simulation</li> <li>Solar Thergy System Simulation</li> <li>Solar thermal system modeling</li> <li>Solar thermal system modeling</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | solutions.                                                                            |  |  |  |  |  |  |
| Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation         Indicative Contents       Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation         Indicative Contents       Simulation in renewable energy systems         Indicative Contents       Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable systems         Indicative Contents       Simulation Software and Tools         Introduction to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | (LO15). Sensitivity Analysis: Graduates of the module will be proficient in           |  |  |  |  |  |  |
| Indicative Contents       and parameters on system performance and behavior.         Indicative Contents       (L016). Scenario Planning: Students will be capable of using simulation to explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.         (L017). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.         (L018). Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy sector, contributing to the design, analysis, and optimization of real-world renewable energy projects.         Indicative content includes the following.         • Introduction to Simulation         • Role of simulation in renewable energy systems         • Mathematical Modeling         • Basics of mathematical modeling         • Differential equations and system representation         • Energy balance equations for renewable systems         • Simulation Software and Tools         • Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)         • Hands-on training with simulation tools         • Solar Thermal system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | conducting sensitivity analyzes to evaluate the impact of different variables         |  |  |  |  |  |  |
| Indicative Contents       Indicative Contents         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Simulation Software and Tools         Indicative Contents       Simulation Software and Tools         Indicative Contents       Simulation Software and Tools         Introduction to software and Tools       Simulation software and Tools         Indicative Contents       Simulation software and Tools         Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)       Introduction to simulation tools         Solar Pergy System Simulation       Solar Termal system modeling         Introduction to simulation tools       Solar thermal system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | and parameters on system performance and behavior.                                    |  |  |  |  |  |  |
| Indicative Contents       explore various scenarios, allowing them to assess the resilience and adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.         (L017).       Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.         (L018).       Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy sector, contributing to the design, analysis, and optimization of real-world renewable energy projects.         Indicative content includes the following.       Introduction to Simulation         •       Definition and importance of simulation         •       Definition and importance of simulation         •       Definition and system representation         •       Energy balance equations for renewable systems         •       Simulation Software and Tools         •       Introduction to simulation tools         •       Solar Energy System Simulation         •       Solar Energy System Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | (LO16). Scenario Planning: Students will be capable of using simulation to            |  |  |  |  |  |  |
| Indicative Contents       adaptability of renewable energy systems in different conditions, including extreme weather events or changing energy demands.         Indicative Contents       (L017). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.         Indicative content includes the following.       (L018). Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy sector, contributing to the design, analysis, and optimization of real-world renewable energy projects.         Indicative content includes the following.       Introduction to Simulation         • Definition and importance of simulation       • Definition and importance of simulation         • Basics of mathematical Modeling       • Differential equations and system representation         • Energy balance equations for renewable systems       Simulation Software and Tools         • Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)       • Hands-on training with simulation tools         • Solar Energy System Simulation       • Solar thermal system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | explore various scenarios, allowing them to assess the resilience and                 |  |  |  |  |  |  |
| Indicative Contents <ul> <li>Introduction to Simulation</li> <li>Intervential equations and system representation</li> <li>Energy balance equations for renewable systems</li> <li>Simulation Software and Tools</li> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | adaptability of renewable energy systems in different conditions. including           |  |  |  |  |  |  |
| Indicative Contents <ul> <li>(L017). Reporting and Communication: Students will be able to effectively communicate their simulation results and findings to various stakeholders, such as project managers, policymakers, and investors.</li> <li>(L018). Practical Applications: Upon completion, students should be able to apply their simulation skills to practical situations in the renewable energy sector, contributing to the design, analysis, and optimization of real-world renewable energy projects.</li> </ul> <li>Indicative content includes the following.         <ul> <li>Introduction to Simulation</li> <li>Definition and importance of simulation</li> <li>Role of simulation in renewable energy systems</li> <li>Mathematical Modeling             <ul> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> <li>Simulation Software and Tools</li> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li></ul></li></ul></li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | extreme weather events or changing energy demands.                                    |  |  |  |  |  |  |
| Indicative Contents       Indicative Contents         Indicative Contents       Indicative contents         Indicative Contents       Solar Energy System Simulation software (eg, Python, MATLAB/Simulink, RET Screen)         Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)       Solar PV system modeling         Solar PV system modeling       Solar thermal system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | (1017) Reporting and Communication: Students will be able to effectively              |  |  |  |  |  |  |
| Indicative Contents       Solar Energy System Simulation software (eg, Python, MATLAB/Simulink, RET Screen)         Indicative Contents       Solar PV system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | communicate their simulation results and findings to various stakeholders             |  |  |  |  |  |  |
| Indicative Contents       Indicative Contents         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation         Indicative Contents       Introduction to Simulation         Indicative Contents       Introduction to Simulation         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to simulation software representation         Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)       Introduction to simulation tools         Indicative Solar Energy System Simulation       Solar PV system modeling         Indicative Solar Thermal system modeling       Solar thermal system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | such as project managers, policymakers, and investors                                 |  |  |  |  |  |  |
| Indicative Contents       Introduction to Simulation software equations         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation in renewable energy systems         Indicative Contents       Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)         Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)       Introduction to simulation         Indicative Solar Energy System Simulation       Solar Energy System Simulation         Indicative Solar thermal system modeling       Solar thermal system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | (1018) Practical Applications: Upon completion students should be able                |  |  |  |  |  |  |
| Indicative Contents       Indicative Contents         Indicative Contents       Introduction to Simulation and importance of simulation         Indicative Contents       Intervention         Intervention       Intervention         Intervention       Intervention         Intervention       Interventin         Interventin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | to apply their simulation skills to practical situations in the renewable             |  |  |  |  |  |  |
| Indicative Contents       Introduction to Simulation         Indicative Contents       Introduction to Simulation in renewable energy systems         Indicative Contents       Mathematical Modeling         Indicative Contents       Basics of mathematical modeling         Introduction to Simulation software representation       Energy balance equations for renewable systems         Introduction to simulation software and Tools       Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)         Intards-on training with simulation tools       Solar Energy System Simulation         Indicative Solar Energy System modeling       Solar thermal system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | energy sector contributing to the design analysis and ontimization of real-           |  |  |  |  |  |  |
| Indicative content includes the following.         Indicative content includes the following.         Introduction to Simulation         • Definition and importance of simulation         • Role of simulation in renewable energy systems         • Mathematical Modeling         • Basics of mathematical modeling         • Differential equations and system representation         • Energy balance equations for renewable systems         • Simulation Software and Tools         • Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)         • Hands-on training with simulation tools         • Solar Energy System Simulation         • Solar PV system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | world renewable energy projects                                                       |  |  |  |  |  |  |
| <ul> <li>Introduction to Simulation</li> <li>Definition and importance of simulation</li> <li>Role of simulation in renewable energy systems</li> <li>Mathematical Modeling         <ul> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> </ul> </li> <li>Simulation Software and Tools         <ul> <li>Introduction to simulation tools</li> <li>Solar Energy System Simulation</li> <li>Solar Energy System modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Indicative content includes the following                                             |  |  |  |  |  |  |
| <ul> <li>Definition and importance of simulation</li> <li>Definition and importance of simulation</li> <li>Role of simulation in renewable energy systems</li> <li>Mathematical Modeling         <ul> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> </ul> </li> <li>Simulation Software and Tools         <ul> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Introduction to Simulation                                                            |  |  |  |  |  |  |
| <ul> <li>Definition and importance of simulation</li> <li>Role of simulation in renewable energy systems</li> <li>Mathematical Modeling         <ul> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> </ul> </li> <li>Simulation Software and Tools         <ul> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | Introduction to simulation     Definition and importance of simulation                |  |  |  |  |  |  |
| <ul> <li>Role of simulation in renewable energy systems</li> <li>Mathematical Modeling         <ul> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> </ul> </li> <li>Simulation Software and Tools         <ul> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | Definition and importance of simulation                                               |  |  |  |  |  |  |
| <ul> <li>Mathematical Modeling         <ul> <li>Basics of mathematical modeling</li> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> </ul> </li> <li>Simulation Software and Tools         <ul> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation             <ul> <li>Solar Energy System modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Role of simulation in renewable energy systems                                        |  |  |  |  |  |  |
| <ul> <li>Basics of mathematical modeling         <ul> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> </ul> </li> <li>Simulation Software and Tools         <ul> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> </ul> </li> <li>Solar Energy System Simulation         <ul> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Mathematical Modeling                                                                 |  |  |  |  |  |  |
| <ul> <li>Differential equations and system representation</li> <li>Energy balance equations for renewable systems</li> <li>Simulation Software and Tools</li> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | <ul> <li>Basics of mathematical modeling</li> </ul>                                   |  |  |  |  |  |  |
| <ul> <li>Energy balance equations for renewable systems</li> <li>Simulation Software and Tools</li> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | <ul> <li>Differential equations and system representation</li> </ul>                  |  |  |  |  |  |  |
| <ul> <li>Simulation Software and Tools</li> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink, RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Indicative Contents | <ul> <li>Energy balance equations for renewable systems</li> </ul>                    |  |  |  |  |  |  |
| <ul> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink,<br/>RET Screen)</li> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation         <ul> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | <ul> <li>Simulation Software and Tools</li> </ul>                                     |  |  |  |  |  |  |
| RET Screen) <ul> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation <ul> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | <ul> <li>Introduction to simulation software (eg, Python, MATLAB/Simulink,</li> </ul> |  |  |  |  |  |  |
| <ul> <li>Hands-on training with simulation tools</li> <li>Solar Energy System Simulation         <ul> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | RET Screen)                                                                           |  |  |  |  |  |  |
| <ul> <li>Solar Energy System Simulation</li> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | <ul> <li>Hands-on training with simulation tools</li> </ul>                           |  |  |  |  |  |  |
| <ul> <li>Solar PV system modeling</li> <li>Solar thermal system modeling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Solar Energy System Simulation                                                        |  |  |  |  |  |  |
| Solar thermal system modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | <ul> <li>Solar PV system modeling</li> </ul>                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Solar thermal system modeling                                                         |  |  |  |  |  |  |

| <ul> <li>Impact of solar irradiance and weather conditions</li> </ul>                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Wind Energy System Simulation                                                                                                              |
| Wind turbine modeling                                                                                                                      |
| Wind farm modeling                                                                                                                         |
| <ul> <li>Wind resource assessment and simulation</li> </ul>                                                                                |
| Hydropower System Simulation                                                                                                               |
| Hydroelectric power plant modeling                                                                                                         |
| <ul> <li>Run-of-river and dam-based systems</li> </ul>                                                                                     |
| <ul> <li>Impact of water flow and reservoir levels</li> </ul>                                                                              |
| Biomass Energy System Simulation                                                                                                           |
| <ul> <li>Biomass combustion and gasification modeling</li> </ul>                                                                           |
| <ul> <li>Biogas and biofuel production simulation</li> </ul>                                                                               |
| <ul> <li>Resource availability and feedstock analysis</li> </ul>                                                                           |
| <ul> <li>Geothermal Energy System Simulation</li> </ul>                                                                                    |
| <ul> <li>Geothermal power plant modeling</li> </ul>                                                                                        |
| <ul> <li>Geothermal heat pump modeling</li> </ul>                                                                                          |
| <ul> <li>Ground heat exchanger simulations</li> </ul>                                                                                      |
| Data Collection and Integration                                                                                                            |
| <ul> <li>Gathering data for simulation</li> </ul>                                                                                          |
| <ul> <li>Data analysis and validation</li> </ul>                                                                                           |
| <ul> <li>Integrating real data into simulations</li> </ul>                                                                                 |
| Performance Assessment                                                                                                                     |
| <ul> <li>Evaluating the performance of renewable energy systems using</li> </ul>                                                           |
| simulation                                                                                                                                 |
| Performance indicators and metrics                                                                                                         |
| Optimization Techniques                                                                                                                    |
| Strategies for optimizing renewable energy system performance                                                                              |
| Sensitivity analysis and scenario planning                                                                                                 |
| Grid Integration and Energy Storage                                                                                                        |
| Simulation of grid-connected renewable energy systems                                                                                      |
| Battery energy storage and load balancing                                                                                                  |
| Case studies and Projects                                                                                                                  |
| Analysis of real-world renewable energy projects using simulation     Croup projects and hands on simulation evereises                     |
| Group projects and flands-off simulation exercises                                                                                         |
| Sustainability and Environmental impact Assessment                                                                                         |
| Environmontal impact assocsments                                                                                                           |
| Report Writing and Communication                                                                                                           |
| Communicating simulation results effectively                                                                                               |
| <ul> <li>Dresentation of findings to stakeholders</li> </ul>                                                                               |
| Emerging Technologies and Future Trends                                                                                                    |
| <ul> <li>Enciging recinition gies and rucule filenus</li> <li>Exploration of innovative simulation tools and techniques</li> </ul>         |
| <ul> <li>Exploration of innovative simulation tools and techniques</li> <li>Enture trends in renewable energy system simulation</li> </ul> |
| - i uture trenus in renewasie energy system sinulation                                                                                     |

| Learning and Teaching Strategies |                                                                         |  |  |  |
|----------------------------------|-------------------------------------------------------------------------|--|--|--|
|                                  | Teaching Method 1 - Lectures                                            |  |  |  |
|                                  | Description:                                                            |  |  |  |
|                                  | Attendance Recorded: Yes                                                |  |  |  |
|                                  | Teaching Method 2 - Asynchronous on-line course materials               |  |  |  |
|                                  | Description: Podcasts, videos and articles in thermodynamics            |  |  |  |
|                                  | Attendance Recorded: No                                                 |  |  |  |
|                                  |                                                                         |  |  |  |
|                                  | Unscheduled Directed Student Hours (time spent away from the timetabled |  |  |  |
| Strategies                       | sessions but directed by the teaching staff).                           |  |  |  |
| U                                | Teaching Method 3 - Tutorials                                           |  |  |  |
|                                  | Description:                                                            |  |  |  |
|                                  | Attendance Recorded: Yes                                                |  |  |  |
|                                  |                                                                         |  |  |  |
|                                  | Teaching Method 4 - Practical                                           |  |  |  |
|                                  | Description: Practical homework assignments                             |  |  |  |
|                                  | Attendance Recorded: No                                                 |  |  |  |
|                                  | Unscheduled Directed Student Hours (time spent away from the timetabled |  |  |  |
|                                  | sessions but directed by the teaching staff).                           |  |  |  |

| Student Workload (SWL)                                                        |     |                                                           |     |  |
|-------------------------------------------------------------------------------|-----|-----------------------------------------------------------|-----|--|
| Structured SWL (h/sem)<br>Regular student load during the semester            | 78  | Structured SWL (h/w)<br>Regular weekly student load       | 5.2 |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 72  | Unstructured SWL (h/w)<br>Irregular student load per week | 4.8 |  |
| Total SWL (h/sem)<br>The student's total academic load during<br>the semester | 150 |                                                           |     |  |

| Module Evaluation       |                 |             |                   |                       |                            |
|-------------------------|-----------------|-------------|-------------------|-----------------------|----------------------------|
|                         |                 | Time/Number | Weight<br>(Marks) | Week Due              | Relevant Learning Outcome  |
|                         | Quizzes         | 5           | 10% (10)          | 4,6,8,10,12<br>and 14 | LO #2, #3,#5,#7,#9 and #11 |
| Formative<br>assessment | Assignments     | 5           | 10% (10)          | 2,6,8 and<br>12       | LO #1, #4, #6and #10       |
|                         | Projects / Lab. | 4           | 20% (20)          | Continuous            | All                        |
|                         | Report          |             |                   |                       |                            |
| Summative               | Midterm Exam    | 2 hours     | 10%(10)           | 7                     | LO #1 - #5                 |
| assessment              | Final Exam      | 3 hours     | 50%(50)           | 16                    | All                        |

| Total assessment | 100% (100 |  |
|------------------|-----------|--|
|                  | Marks)    |  |

| Delivery Plan (Weekly Syllabus) |                                                                                          |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Week 1                          | Introduction to Simulation - Overview of the course, Importance of simulation in         |  |  |  |
| Week 1                          | renewable energy, Introduction to mathematical modeling                                  |  |  |  |
| Week2                           | Mathematical Modeling - Basics of mathematical modeling, Differential equations and      |  |  |  |
| VVEEKZ                          | system representation, Energy balance equations for renewable systems                    |  |  |  |
|                                 | Simulation Software and Tools - Introduction to simulation software (eg, Python,         |  |  |  |
| Week3                           | MATLAB/Simulink, RETScreen), Hands-on training with simulation tools, Creating simple    |  |  |  |
|                                 | simulations                                                                              |  |  |  |
| Wook4                           | Solar Energy System Simulation - Modeling of solar PV systems, Modeling of solar thermal |  |  |  |
| VVEEK4                          | systems, Impact of solar irradiance and weather conditions on simulations                |  |  |  |
| MookE                           | Wind Energy System Simulation - Wind turbine modeling, Wind farm modeling, Wind          |  |  |  |
| VVEEKS                          | resource assessment and simulation                                                       |  |  |  |
| Week6                           | Hydropower System Simulation - Hydroelectric power plant modeling, Run-of-river and      |  |  |  |
| VVEEKO                          | dam-based systems, Impact of water flow and reservoir levels                             |  |  |  |
| Week7                           | Biomass Energy System Simulation - Biomass combustion and gasification modeling,         |  |  |  |
| VVEEK7                          | Biogas and biofuel production simulation, Resource availability and feedstock analysis   |  |  |  |
| M/s slv0                        | Geothermal Energy System Simulation - Geothermal power plant modeling, Geothermal        |  |  |  |
| VVEEKo                          | heat pump modeling, Ground heat exchanger simulations                                    |  |  |  |
| Week0                           | Data Collection and Integration - Gathering data for simulations, Data analysis and      |  |  |  |
| VVEEK9                          | validation, Integrating real data into simulations                                       |  |  |  |
| Wook 10                         | Performance Assessment - Evaluating the performance of renewable energy systems          |  |  |  |
| Week 10                         | using simulation, performance indicators and metrics                                     |  |  |  |
| Week 11                         | Optimization Techniques - Strategies for optimizing renewable energy system              |  |  |  |
| Week 11                         | performance, Sensitivity analysis and scenario planning                                  |  |  |  |
| Week 12                         | Grid Integration and Energy Storage - Simulation of grid-connected renewable energy      |  |  |  |
| Week 12                         | systems, Battery energy storage and load balancing simulations                           |  |  |  |
| Week 12                         | Case Studies and Projects - Analysis of real-world renewable energy projects using       |  |  |  |
| Week 13                         | simulation, Group projects and hands-on simulation exercises                             |  |  |  |
| Mook 14                         | Sustainability and Environmental Impact Assessment - Incorporating sustainability        |  |  |  |
| VVEEK 14                        | aspects into simulation, Environmental impact assessments in renewable energy projects   |  |  |  |
| Week 15                         | Report Writing and Communication - Communicating simulation results effectively,         |  |  |  |
| Week 15                         | presenting findings to stakeholders                                                      |  |  |  |

| Learning and Teaching Resources |                                                                                                                                                                                            |                           |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                                                                                                                                                       | Available in the Library? |  |  |
| Required Texts                  | Solar PV and Wind Energy Conversion Systems: An<br>Introduction to Theory, Modeling with MATLAB/Simulink,<br>and the Role of Soft Computing Techniques by S. Sumathi<br>and L. Ashok Kumar | No                        |  |  |
| Recommended Texts               | Modeling and Simulation of Green Energy Technologies by Michael M. Ohadi and S. Javad Ahmadi                                                                                               | No                        |  |  |

|                                       |                                                  | Simulat<br>Impact | tion-Based Analysis of E<br>s by Yi-Ming Wei and Da | nergy and Ca<br>abo Guan                               | rbon Emi                   | ssion No   |         |
|---------------------------------------|--------------------------------------------------|-------------------|-----------------------------------------------------|--------------------------------------------------------|----------------------------|------------|---------|
|                                       | Module 37<br>Subject information                 |                   |                                                     |                                                        |                            |            |         |
| ]                                     | Module Title         Engineering projects manage |                   |                                                     | gement                                                 |                            | Module Do  | elivery |
| Μ                                     | odule Type                                       |                   | Support                                             |                                                        |                            | ⊠Theory    |         |
| Μ                                     | odule Code                                       |                   | COGTEK 400                                          |                                                        |                            | □Lecture   |         |
| E                                     | CTS Credits                                      | its 4             |                                                     |                                                        |                            |            |         |
|                                       | SWL (hr/sem) 100                                 |                   |                                                     |                                                        |                            | ⊠Tutorial  |         |
| S                                     |                                                  |                   | 100                                                 |                                                        |                            | □Practical |         |
|                                       |                                                  |                   | Γ                                                   |                                                        |                            | ⊠Seminar   | Ι       |
| Module Level4Semest                   |                                                  |                   | Semester o                                          | f Deliver                                              | У                          | 7          |         |
| Administering Department              |                                                  | epartment         | RETE                                                | CollegeCollege of Oil & Gas Tech<br>Engineering/Kirkuk |                            | Techniques |         |
| Μ                                     | odule Leader                                     |                   |                                                     | e-mail                                                 |                            |            |         |
| Μ                                     | odule Leader's                                   | Acad. Title       | Assist. Lecture                                     | Module Le                                              | Leader's Qualification MSc |            |         |
| Μ                                     | odule Tutor                                      |                   |                                                     | e-mail                                                 | @ntu.edu.iq                |            |         |
| Pe                                    | eer Reviewer Na                                  | ame               | Name                                                | e-mail                                                 | Email                      |            |         |
| Scientific Committee Approval<br>Date |                                                  | 06/01/2023        | Version Nu                                          | Number 1.0                                             |                            |            |         |

| Relation with other Modules |      |          |  |  |
|-----------------------------|------|----------|--|--|
| Prerequisite module         | None | Semester |  |  |
| Co-requisites module        | None | Semester |  |  |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                            |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                        | 1. Introduce the student to the methods of management and the appropriation of each of them in different fields of work.                                                                   |  |  |  |
|                                                        | 2. Introduce the student to exercise the different methods of management in the mini groups to elevate his ability in management.                                                          |  |  |  |
|                                                        | 3. Enhance the student skills in management by giving the typical solution on the assumed Problem.                                                                                         |  |  |  |
| Module Objectives                                      | 4. Introducing students to different types of feasibility studies and how to assess each of them.                                                                                          |  |  |  |
|                                                        | 5. Introducing students to make the network planning for the different engineering                                                                                                         |  |  |  |
|                                                        | Processes.                                                                                                                                                                                 |  |  |  |
|                                                        | 6. Introducing the student to the administrative and production organization of industrial enterprises.                                                                                    |  |  |  |
|                                                        | 7. Introducing the student to Break-Even Analysis.                                                                                                                                         |  |  |  |
|                                                        | 1. Enable the student to use knowledge to manage the different purposes of organizations.                                                                                                  |  |  |  |
|                                                        | 2. Enable engineers to use modern programs to solve the technical problems in                                                                                                              |  |  |  |
|                                                        | Organizations where they managed.                                                                                                                                                          |  |  |  |
| Module Learning                                        | 3. Enable engineers to plan the administrative and production organization of industrial enterprises.                                                                                      |  |  |  |
| outcomes                                               | 4. Enable engineers to plan the network planning for the different engineering processes and find the typical path of the minimum duration that offers the best quality of the production. |  |  |  |
|                                                        | 5. Enable engineers to study the feasibility of the industrial processes which leads to                                                                                                    |  |  |  |
|                                                        | Successful of the production.6. Enable engineers to calculate the Break-Even of any production or trading process and calculate the duration of that case.                                 |  |  |  |
|                                                        | 7. Enhance the student's skills in management by giving the typical solution to the assumed problem                                                                                        |  |  |  |
| Indicative Contents                                    | Indicative content includes the following.                                                                                                                                                 |  |  |  |
|                                                        | BUILDING SURVEY                                                                                                                                                                            |  |  |  |
|                                                        | Introduction to the management [10 hrs]                                                                                                                                                    |  |  |  |

| Modern methods of the management [15 hrs]                                                   |
|---------------------------------------------------------------------------------------------|
| Feasibility study [15 hrs]                                                                  |
| BREAK-EVEN ESTIMATION                                                                       |
| The necessity of calculations of the break-even point and its duration. [15 hrs]            |
| • FEASIBILITY STUDY                                                                         |
| The necessity of the different field feasibility study [15 hrs]                             |
| <ul> <li>Administrative and production organization of industrial enterprises</li> </ul>    |
| The meaning of the administrative and production organization of industrial enterprises and |
| how can make the most appropriate administrative layout [15 hrs                             |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Strategies                       | The main strategy that will be adopted in delivering this module is to encourage<br>Students' participation in the management exercises, while at the same time refining<br>and expanding their critical thinking skills. This will be achieved through classes,<br>interactive tutorials and by considering types of simple experiments involving some<br>sampling activities that are interesting to the students. |  |  |

| Student Workload (SWL)                                                |    |                                                           |     |
|-----------------------------------------------------------------------|----|-----------------------------------------------------------|-----|
| The student's academic load is calculated for 15 weeks.               |    |                                                           |     |
| Structured SWL (h/sem)<br>Regular student load during the<br>semester | 47 | Structured SWL (h/w)<br>Regular weekly student load       | 3.1 |
| Unstructured SWL (h/sem)                                              | 53 | Unstructured SWL (h/w)<br>Irregular student load per week | 3.5 |

| Irregular student load during the semester                                    |     |
|-------------------------------------------------------------------------------|-----|
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester | 100 |

| Module Evaluation |              |             |                  |            |                              |
|-------------------|--------------|-------------|------------------|------------|------------------------------|
|                   |              | Time/Number | Weight (Marks)   | Week Due   | Relevant Learning<br>Outcome |
| Formative         | Quizzes      | 5           | 20% (20)         | 3.5 and 10 | LO #1, #2 and #5             |
| assessment        | Assignments  | 5           | 20% (20)         | 4,8 and 12 | LO #3, #4, #6 and #7         |
|                   | Report       |             |                  |            |                              |
| Summative         | Midterm Exam | 2hr         | 10% (10)         | 7          | LO #1 - #7                   |
| assessment        | Final Exam   | 3hr         | 50% (50)         | 16         | All                          |
| Total assessment  |              |             | 100% (100 Marks) |            |                              |

| Delivery Plan (Weekly Syllabus) |                                                                                                                      |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | Material Covered                                                                                                     |  |  |  |
| Week 1                          | Introduction – definition and examples related to the industrial engineering management -<br>Functions of management |  |  |  |
| Week 2                          | Establish Goals and Objectives                                                                                       |  |  |  |
| Week 3                          | Feasibility Study, Technical feasibility, Economic feasibility                                                       |  |  |  |
| Week 4                          | Feasibility Study, Schedule feasibility, Operational feasibility                                                     |  |  |  |

| Wook F  | Analyzing Costs vs. Benefits, Calculating Present Value, Net Present Value (NPV), Internal Rate of        |
|---------|-----------------------------------------------------------------------------------------------------------|
| Week 5  | Return (IRR).                                                                                             |
|         |                                                                                                           |
| Week 6  | Administrative and production organization of industrial enterprises, Linear structure, Consulting        |
|         | structure, Functional structure.                                                                          |
| Week 7  | Break-Even Analysis, Break-point calculations                                                             |
| Week 8  | Introduction in Network planning                                                                          |
|         | Network planning, calculation of the critical path, float time, meaning of the early start, early finish, |
| Week 9  | late start and late finish.                                                                               |
|         |                                                                                                           |
| Week 10 | Network planning, Program Evaluation and Review Technique (PERT).                                         |
| Week 11 | Cold Thermal Energy Storage                                                                               |
| Week 12 | Quality Control and production inspection method                                                          |
| WEEK 12 | Quality control and production inspection method                                                          |
| Week 13 | Industrial costs and controllable cost techniques                                                         |
| Week 14 | Maintonanaa                                                                                               |
| Week 14 | Maintenance                                                                                               |
| Week 15 | Replacement                                                                                               |
| Wook 16 | Self assessment control                                                                                   |
| Week 10 |                                                                                                           |
|         |                                                                                                           |

| Learning and Teaching Resources |                                                                              |                           |  |  |
|---------------------------------|------------------------------------------------------------------------------|---------------------------|--|--|
|                                 | Text                                                                         | Available in the Library? |  |  |
| Required Texts                  |                                                                              | Yes                       |  |  |
|                                 | Dr. Khalil Al-Ani, Dr. Ismail Ibrahim Al-Qazzaz, Dr. Adel Abdul Malik Awlair |                           |  |  |
| Recommended                     | "Administration                                                              |                           |  |  |
| Texts                           | Total Quality and ISO 9001:2000 Requirements, First Edition 2001, Al-        |                           |  |  |
|                                 | Ashqar Press, Baghdad                                                        |                           |  |  |
| Websites                        | 1. <u>https://www.workamajig.com/blog/critical-path-method</u>               |                           |  |  |

|  | 2.                                                                              |
|--|---------------------------------------------------------------------------------|
|  | https://www.editorialmanager.com/cherd/default2.aspx?pg=AuthorshipVerification. |
|  | aspx&d ocid=50317&authorID=%7b0854344E-1B2D-43DE-9697-                          |
|  | 4095BA17131E%7d&msid=%7bC7C1D8B5-7EF8-4FDD-B449 -5CE3CD0A947A %7d               |
|  | <ol><li>https://www.investopedia.com/terms/q/quality-control.asp</li></ol>      |

| Module 38<br>Subject information      |          |                       |                             |                                  |                                                                         |
|---------------------------------------|----------|-----------------------|-----------------------------|----------------------------------|-------------------------------------------------------------------------|
| Module Title                          |          | Power Plan            | ts                          | Module Delivery                  |                                                                         |
| Module Type                           |          | Core                  |                             | ⊠Theory                          |                                                                         |
| Module Code                           | RETE 404 |                       |                             | □ Lecture<br>⊠ Lab               |                                                                         |
| ECTS Credits                          | 5        |                       |                             |                                  |                                                                         |
| SWL (hr/sem)                          | 125      |                       |                             | $\boxtimes$ Seminar              |                                                                         |
| Module Level                          |          | 4                     | Semester of                 | Delivery                         | 7                                                                       |
| Administration Department             |          | RETE                  | College                     | College of<br>Engineering -<br>U | Oil and Gas Techniques<br>Kirkuk, Northern Technical<br>niversity, Iraq |
| Module Leader                         | Marwa k  | Khaleel Rashid        | e-mail                      | marwa.khaleel2                   | <u>3@ntu.edu.iq</u>                                                     |
| Module Leader's Acad. Title           |          | Assistant<br>lecturer | Module Lea<br>Qualification | der's<br>n                       | M.Sc.                                                                   |
| Module Tutor                          |          | e-mail                |                             |                                  |                                                                         |
| Peer Reviewer Name                    |          |                       | e-mail                      |                                  |                                                                         |
| Scientific Committee Approval<br>Date |          |                       | Version<br>Number           |                                  |                                                                         |

| Relation with other Modules        |      |          |  |  |
|------------------------------------|------|----------|--|--|
| Prerequisite module                | None | Semester |  |  |
| Co-requisites module None Semester |      |          |  |  |

| Module Aims,                | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ol> <li>Power plant engineering deals with the study of energy, its sources and</li> <li>Utilization of energy for power generation.</li> <li>The power is generated by prime movers (example Hydraulic turbines, steam</li> <li>turbines, diesel engines)</li> <li>Large amount of power is generated using prime movers in a site or layout</li> <li>called power plants, where all the equipment and machinery required for</li> <li>power generation is located</li> <li>4. Energy may be defined as the capacity to do work. Energy exists in various</li> <li>forms, such as Mechanical Energy, thermal energy, electrical energy, solar</li> <li>energy etc</li> <li>5. Energy may be defined as the capacity to do work. Energy exists in various</li> </ol>                                                                                                                                                                                                                                     |
| Module Learning<br>Outcomes | <ol> <li>energy etc</li> <li>Explain about the plant steam cycles</li> <li>To make the students understanding Binary cycle working on mercury<br/>and</li> <li>steam, combine condenser</li> <li>To make the students understanding Combustion and Fuels</li> <li>Enables the students to learn Steam Condensers, Kinds, Direct Contact</li> <li>Condensers, Surface Condenser</li> <li>To make the students understand all about the Steam Nozzles,<br/>Applications</li> <li>To explain the Pumps, Kinds of Pumps</li> <li>Explain the operation of Pumps in series and Parallel, Centrifugal pumps</li> <li>To help student how to calculate Steam Turbines, The Kinds, Impulse<br/>Turbine,</li> <li>Blades Efficiency</li> <li>To help students understand how to solve the water treatment and<br/>testing</li> <li>in boiler</li> <li>Skills outcomes</li> <li>Analysis</li> <li>synthesis</li> <li>interpretation,</li> <li>report writing</li> <li>laboratory</li> <li>computational.</li> </ol> |

|                     | Indicative content includes the following.<br>Part A -<br>Introduction to power cycle, Carnot cycle, Rankin cycle ideal and actual,<br>Rankin cycle with reheat.<br>[15 hrs]<br>Open feed water heater and close feed water heaters, binary cycle,<br>combine cycle[15 hrs]<br>Steam condenser are direct and indirect contact, the efficiency of steam<br>condenser [10 hrs] |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicative Contents | Fuel and combustion, and how to calculate the air to fuel ratio [15 hrs]<br>Calculate the heat of combustion [6hrs]                                                                                                                                                                                                                                                           |
|                     | Part B –<br>Fundamentals<br>. To understand the diagram of nozzle converge-divergence nozzles,<br>Applications [15 hrs]<br>System Characteristics, Pumps Characteristics, Matching Pumps to<br>System<br>Characteristics. [7 hrs]<br>Steam Turbines, The Kinds, Impulse Turbine, Blades Efficiency. Water<br>Treatment and Testing [15 hrs]                                   |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this<br>module is to encourage students' participation in the exercises, while at the<br>same time refining and expanding their critical thinking skills. This will be<br>achieved through classes, interactive tutorials and by considering types of<br>simple experiments involving some sampling activities that are interesting to<br>the students |  |

| Student Workload (SWL)                     |    |                                 |       |  |
|--------------------------------------------|----|---------------------------------|-------|--|
| Structured SWL (h/sem)                     | 63 | Structured SWL (h/w)            | 4.2   |  |
| Regular student load during the semester   | 05 | Regular weekly student load     | 7.2   |  |
| Unstructured SWL (h/sem)                   | 62 | Unstructured SWL (h/w)          | 1 1 2 |  |
| Irregular student load during the semester | 02 | Irregular student load per week | 4.15  |  |
| Total SWL (h/sem)                          |    |                                 |       |  |
| The student's total academic load during   |    | 125                             |       |  |
| the semester                               |    |                                 |       |  |

## Module Evaluation

|                  |               | Time/Number | Weight<br>(Marks) | Week Due   | Relevant Learning<br>Outcome |
|------------------|---------------|-------------|-------------------|------------|------------------------------|
|                  | Quizzes       | 5           | 10% (10)          | 3,6,10,12  | LO #2, #3 and #7             |
| Formative        | Assignments   | 5           | 10% (10)          | 2, 5,9, 11 | LO #1, #4, #6 and #8         |
| assessment       | Lab Report    | 10          | 20% (20)          | Continuous | All                          |
| Summativo        | Mid Term exam | 2 hours     | 10% (10)          | 7          | LO #1-4                      |
| assessment       | Final Exam    | 3hr         | 50% (50)          | 16         | All                          |
| 100% (100 Marks) |               |             |                   |            |                              |

|         | Delivery Plan (Weekly Syllabus)                                                         |
|---------|-----------------------------------------------------------------------------------------|
| Week 1  | Introductions, Plant steam cycles, main cycles                                          |
| Week 2  | Reheat cycle, regenerative cycle, open feed water heater                                |
| Week 3  | closed feed water heaters, combine cycles                                               |
| Week 4  | Binary cycle working on mercury and steam, combine condenser                            |
| Week 5  | Combustion and Fuels                                                                    |
| Week 6  | Correct Air/Fuel Ratio                                                                  |
| Weeks 7 | Mid-Term Exam                                                                           |
| Weeks 8 | Steam Condensers, Kinds                                                                 |
| Week 9  | Direct Contact Condensers, Surface Condenser                                            |
| Week 10 | Steam Nozzles, Applications                                                             |
| Week 11 | The Pumps, Kinds of Pumps,                                                              |
| Week 12 | System Characteristics, Pumps Characteristics, Matching Pumps to System Characteristics |
| Week 13 | Operation of Pumps in series and Parallel, Centrifugal pumps                            |
| Week 14 | Steam Turbines, The Kinds, Impulse Turbine, Blades Efficiency                           |
| Week 15 | Preparing for the final exam                                                            |

## Delivery Plan (Weekly Lab. Syllabus)

|        | Material Covered                                                 |
|--------|------------------------------------------------------------------|
| Week 1 | Lab 1: Introduction to boiler                                    |
| Week 2 | Lab 2: Boiler feed water repeated for times with variable inputs |
| Week 3 | Lab 3: To calculate the efficiency of steam condenser            |
| Week 4 | Lab 4: Air to fuel ratio of combustion                           |
| Week 5 | Lab 5: To calculate the power of pumps kinds                     |
| Week 6 | Lab 6: The steam nozzle repeated for times with variable inputs  |
| Week 7 | Lab 7: Water treatment in boiler                                 |

| Learning and Teaching Resources |                                                                                                         |                           |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------|--|
|                                 | Text                                                                                                    | Available in the Library? |  |
| Required Texts                  | Thermal engineering (eighth edition) RK RAJPUT                                                          | No                        |  |
| Recommended Texts               | Fundamentals Of engineering thermodynamics,<br>Michael J. Moran and Howard N. Shapiro, Fifth<br>edition | No                        |  |

| Module 39<br>Subject information |         |                           |             |                    |   |
|----------------------------------|---------|---------------------------|-------------|--------------------|---|
| Module Title                     | Meth    | nodology of S<br>Research | cientific   | Module Delivery    |   |
| Module Type                      | Basic   |                           | ⊠Theory     |                    |   |
| Module Code                      | NTU 400 |                           |             | □ Lecture<br>□ Lab |   |
| ECTS Credits                     | 5       |                           |             |                    |   |
| SWL (hr/sem)                     | 125     |                           | Seminar     |                    |   |
| Module Level                     |         | 4                         | Semester of | Delivery           | 7 |

| Administration Department                      |                      | RETE                        | College    | College of C<br>Engineering - K<br>Ur | Dil and Gas Techniques<br>Kirkuk, Northern Technical<br>Niversity, Iraq |
|------------------------------------------------|----------------------|-----------------------------|------------|---------------------------------------|-------------------------------------------------------------------------|
| Module Leader                                  | Marwa Khaleel Rashid |                             | e-mail     | marwa.khaleel23@ntu.edu.iq            |                                                                         |
| Module Leader's Acad. Title Assistant lecturer |                      | Module Lea<br>Qualification | der's<br>า | M.Sc.                                 |                                                                         |
| Module Tutor                                   |                      |                             | e-mail     |                                       |                                                                         |
| Peer Reviewer Name                             |                      | e-mail                      |            |                                       |                                                                         |
| Scientific Committee Approval                  |                      | Version<br>Number           |            |                                       |                                                                         |

| Relation with other Modules                |      |          |  |
|--------------------------------------------|------|----------|--|
| Prerequisite module                        | None | Semester |  |
| Co-requisites module COGTEK 401 Semester 8 |      |          |  |

| Module Aims,    | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims     | <ol> <li>To Understand the significance of scientific research and its role in<br/>advancing knowledge.</li> <li>To Identify the key characteristics of scientific research.</li> <li>This course deals with the basic concept of Formulate research<br/>questions and objectives.</li> <li>This is the basic subject for all ethical considerations in scientific<br/>research</li> </ol> |
|                 | <ol> <li>Recognize the importance of conducting a literature review in research.</li> <li>Familiarize with quantitative and qualitative data collection methods.</li> <li>Understand the principles of experimental design.</li> </ol>                                                                                                                                                     |
| Module Learning | <ol> <li>Understand the nature and significance of scientific research.<br/>Identify the characteristics and principles of scientific research.<br/>Demonstrate an awareness of ethical considerations in scientific<br/>research.</li> </ol>                                                                                                                                              |
| Outcomes        | <ol> <li>Recognize between various research designs.</li> <li>List the various formulate clear research questions and objectives</li> <li>Summarize what is literature review to identify relevant research articles.</li> <li>Discuss and evaluate the credibility and relevance of research</li> </ol>                                                                                   |

|                     | 6. Design experiments that maximize internal and external validity.           |
|---------------------|-------------------------------------------------------------------------------|
|                     | <ol><li>Determine the appropriate sample size for a survey based on</li></ol> |
|                     | research objectives.                                                          |
|                     | 8. Demonstrate proficiency in employing different approaches to               |
|                     | qualitative research.                                                         |
|                     | <b>9.</b> Recognize and apply ethical principles and guidelines in research   |
|                     | involving human subjects                                                      |
|                     | 10. Communicate research results in a clear and concise manner to             |
|                     | different audiences.                                                          |
|                     | <ol><li>Formulate a clear and concise research problem statement.</li></ol>   |
|                     | Indicative content includes the following.                                    |
|                     | Part A - Definition and significance of scientific research [5 hrs.]          |
|                     | Part B- Research Problem Formulation [5 hrs.]                                 |
| Indicative Contents | Part C- Research Design and Methodology [5 hrs.]                              |
|                     | Part D- Literature Review [5 hrs.]                                            |
|                     | Part E- Data Collection and Measurement [5 hrs.]                              |
|                     | Part F- Homework and Discussion [7 hrs.]                                      |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Strategies                       | Studying the Methodology of Scientific Research requires a combination<br>of active learning strategies and focused study techniques, such as;<br>Read the Course Materials, Engage in Discussions, Take Detailed Notes,<br>Practice with Examples, Review and Summarize, Create Visual Aids, and<br>Work on Exercises and Assignments |  |

| Student Workload (SWL)                                                        |        |                                                           |      |
|-------------------------------------------------------------------------------|--------|-----------------------------------------------------------|------|
| Structured SWL (h/sem)<br>Regular student load during the semester            | 32     | Structured SWL (h/w)<br>Regular weekly student load       | 2.13 |
| Unstructured SWL (h/sem)<br>Irregular student load during the semester        | 93     | Unstructured SWL (h/w)<br>Irregular student load per week | 6.2  |
| Total SWL (h/sem)<br>The student's total academic load during the<br>semester | he 125 |                                                           |      |

| Module Evaluation |                 |                   |          |                              |                              |
|-------------------|-----------------|-------------------|----------|------------------------------|------------------------------|
|                   | Time/Number     | Weight<br>(Marks) | Week Due | Relevant Learning<br>Outcome |                              |
| Formative         | Quizzes         | 2                 | 10% (10) | 3,5,8 and 10                 | LO #1, #2 and #9 #10,<br>#11 |
| assessment        | Assignments     | 2                 | 10% (10) | 2,4,6 and 12                 | LO #3, #4 and #6, #7         |
|                   | Projects / Lab. | 1                 | 10% (10) | Continuous                   | All                          |

|                  | Lab Report    | 5       | 10% (10) | 3,7,13,14 | LO #5,#8,11,13 |
|------------------|---------------|---------|----------|-----------|----------------|
| Summativo        | Mid Term exam | 2 hours | 10% (10) | 7         | LO #1 - #7     |
| assessment       | Final Exam    | 3hr     | 50% (50) | 16        | All            |
| 100% (100 Marks) |               |         |          |           |                |

| Delivery Plan (Weekly Syllabus) |                                           |  |
|---------------------------------|-------------------------------------------|--|
| Week 1                          | Introduction to Scientific Research       |  |
| Week 2                          | Research Design                           |  |
| Week 3                          | Literature Review                         |  |
| Week 4                          | Data Collection Methods                   |  |
| Week 5                          | Data Analysis                             |  |
| Week 6                          | Experimental Design                       |  |
| Weeks 7                         | Survey Design and Sampling                |  |
| Weeks 8                         | Qualitative Research Methods              |  |
| Week 9                          | Ethics in Scientific Research             |  |
| Week 10                         | Data Interpretation and Presentation      |  |
| Week 11                         | Peer Review and Publication Process       |  |
| Week 12                         | Research Proposal Writing                 |  |
| Week 13                         | Project Management and Time Planning      |  |
| Week 14                         | Presentations and Research Conferences    |  |
| Week 15                         | Research Ethics Review and Course Wrap-up |  |

| Learning and Teaching Resources |                                                                                                                               |                           |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                 | Text                                                                                                                          | Available in the Library? |
| Required Texts                  | 1. "Research Design: Qualitative, Quantitative, and Mixed<br>Methods Approaches" by John W. Creswell and J. David<br>Creswell | Yes                       |

|                   | 2. "The Craft of Research" by Wayne C. Booth, Gregory G. |    |
|-------------------|----------------------------------------------------------|----|
|                   | Colomb, and Joseph M. Williams                           |    |
|                   | 3. "Research Methodology: A Step-by-Step Guide for       |    |
|                   | Beginners" by Ranjit Kumar                               |    |
| Recommended Texts | Academic Databases: Utilize academic databases such as   | No |
|                   | PubMed, Google Scholar, JSTOR, and IEEE Xplore to search |    |
|                   | for research papers in the methodology of scientific     |    |
|                   | research. Use relevant keywords such as "research        |    |
|                   | methodology," "scientific research design," or specific  |    |
|                   | methodologies you are interested in (eg, "qualitative    |    |
|                   | research methods," "experimental design").               |    |
|                   | (www.socialresearchmethods.net)                          |    |
|                   | (www.researchmethodology.org) (www.qualres.org)          |    |

| Module 40<br>Subject information      |                                   |                 |                               |                                                           |            |
|---------------------------------------|-----------------------------------|-----------------|-------------------------------|-----------------------------------------------------------|------------|
| Module Title                          | Ren                               | newable Energy  | / design                      |                                                           |            |
| Module Type                           |                                   | Core            |                               | ⊠Theory                                                   |            |
| Module Code                           |                                   | <b>RETE 405</b> |                               | □ Lecture<br>⊠ Lab                                        |            |
| ECTS Credits                          | 6                                 |                 |                               |                                                           |            |
| SWL (hr/sem)                          | 150                               |                 | Seminar                       |                                                           |            |
| Module Level                          |                                   | 4               | Semester of D                 | Delivery                                                  | 8          |
| Administration Depart                 | ment                              | RETE            | College                       | College of Oil and Gas Techniques<br>Engineering - Kirkuk |            |
| Module Leader                         | Afrah Tur                         | ki Awad         | e-mail                        | afrah.turki@r                                             | ntu.edu.iq |
| Module Leader's Acad.                 | ale Leader's Acad. Title Lecturer |                 | Module Leade<br>Qualification | er's                                                      | PhD        |
| Module Tutor                          |                                   |                 | e-mail                        |                                                           |            |
| Peer Reviewer Name                    |                                   |                 | e-mail                        |                                                           |            |
| Scientific Committee Approval<br>Date |                                   |                 | Version<br>Number             |                                                           |            |

## **Relation with other Modules**

| Prerequisite module  | None | Semester |  |
|----------------------|------|----------|--|
| Co-requisites module | None | Semester |  |

| Module Aims,                | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ul> <li>The module is intended to present and assess some of the important renewable energy technologies and give some sense of the engineering design and development of some of these technologies. Starting with a brief outline of existing and proposed renewable energy systems, the module adopts an active solution-seeking approach, assessing these technologies against economic, engineering and other criteria.</li> <li>Two of the most promising technologies, wind power, and solar energy are treated in some depth as an example of optimization in mechanical and electrical engineering design. Other technologies studied include geothermal, biomass, ocean and hydro power.</li> </ul>                                                                                                                                                                                                        |
|                             | By the end of the module, students should be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Module Learning<br>Outcomes | <ul> <li>Interpret, apply and resolve the scientific concepts and principles underpinning renewable energy technologies.</li> <li>Evaluate design processes and methodologies for renewable energy systems and apply them to new situations.</li> <li>Autonomously apply mathematical models for solving problems in renewable energy systems, criticizing these methods and advance independent hypotheses for the scope of their applicability and the limitations of these models for practical application.</li> <li>Discuss current practice and its limitations as well as potential new and advanced developments at the forefront of renewable energy technology.</li> </ul>                                                                                                                                                                                                                                  |
| Indicative Contents         | The module on Renewable Energy Design encompasses a diverse array of<br>indicative contents aimed at equipping students with the knowledge and<br>skills necessary to navigate the complexities of designing sustainable<br>energy systems. Beginning with an introduction to renewable energy<br>sources, students delve into the principles and applications of solar, wind,<br>hydro, biomass, and geothermal energy. Site assessment and resource<br>mapping techniques are explored, allowing students to identify optimal<br>locations for renewable energy installations. The curriculum delves into<br>the intricacies of various renewable energy technologies, such as solar<br>photovoltaic systems, wind turbines, and biomass conversion methods,<br>emphasizing system components, design considerations, and integration<br>techniques. Students learn to optimize renewable energy storage solutions, |

-

| ensuring reliable and efficient energy supply. Economic and financial       |
|-----------------------------------------------------------------------------|
| aspects are covered comprehensively, including cost-benefit analysis,       |
| financing options, and incentive programs. Environmental impact             |
| assessment and adherence to regulatory frameworks are emphasized,           |
| instilling an understanding of the environmental and legal considerations   |
| in renewable energy projects. The module also incorporates practical        |
| elements, including hands-on exercises, case studies of successful          |
| projects, and site visits, allowing students to apply theoretical knowledge |
| to real-world scenarios. By exploring emerging technologies and             |
| innovations, students are encouraged to think critically and creatively,    |
| preparing them to contribute meaningfully to the ongoing global             |
| transition towards sustainable energy renewable solutions.                  |

| Le         | arning and Teaching Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strategies | Teaching Method 1 - Lectures<br>Description:<br>Attendance Recorded: Yes<br>Teaching Method 2 - Asynchronous online module materials<br>Description: Podcasts, videos, and articles on Renewable Energy<br>Attendance Recorded: No<br>Unscheduled Directed Student Hours (time spent away from the timetabled<br>sessions but directed by the teaching staff).<br>Teaching Method 3 - Tutorials<br>Description:<br>Attendance Recorded: Yes<br>Teaching Method 4 - Practical<br>Description: Practical homework assignments<br>Attendance Recorded: No<br>Unscheduled Directed Student Hours (time spent away from the timetabled<br>sessions but directed by the teaching staff). |

| Student Workload (SWL)                                                        |    |                                                           |     |  |  |
|-------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|--|--|
| Structured SWL (h/sem)<br>Regular student load during the semester            | 63 | Structured SWL (h/w)<br>Regular weekly student load       | 4.2 |  |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester     | 87 | Unstructured SWL (h/w)<br>Irregular student load per week | 5.8 |  |  |
| Total SWL (h/sem)<br>The student's total academic load during<br>the semester |    | 150                                                       |     |  |  |

| Module 41<br>Course material evaluation |               |             |                   |                  |                              |  |
|-----------------------------------------|---------------|-------------|-------------------|------------------|------------------------------|--|
|                                         |               | Time/Number | Weight<br>(Marks) | Week Due         | Relevant Learning<br>Outcome |  |
| Formative –<br>assessment –             | Quizzes       | 2           | 10% (10)          | 5, 10            | LO # 2,6                     |  |
|                                         | Assignments   | 5           | 10% (10)          | 5,7,12 and<br>14 | LO# 1,2, 3 and 5             |  |
|                                         | Seminar       | 2           | 10% (10)          | Continuous       | All                          |  |
|                                         | Lab Report    | 2           | 10% (20)          | 4.11             | LO # 3, 9                    |  |
| Summative<br>assessment                 | Mid Term exam | 2 hours     | 10% (10)          | 7                | LO #1-7                      |  |
|                                         | Final Exam    | 3hr         | 50% (50)          | 16               | All                          |  |
| 100% (100 Marks)                        |               |             |                   |                  |                              |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                                                                                                         |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Week (1-3)                      | General introduction to renewable energy - renewable energy sources and applications - renewable energy and environmental problems (acid rain, ozone layer depletion, climate change, nuclear risks).                                   |  |  |  |
| Weeks (4 - 5)                   | Resource scale and availability.                                                                                                                                                                                                        |  |  |  |
| Weeks (6 - 7)                   | Available technologies and challenges.<br>Technical and economical assessment of renewable technologies.                                                                                                                                |  |  |  |
| Week (8-9)                      | Detailed technical study of two major renewable energy technologies:<br>Solar energy: solar thermal & solar PV, current technology and future potential.<br>Wind energy: wind turbine configurations and power generating technologies. |  |  |  |
| Week (10-11)                    | Broad study of technologies with less potential:<br>Hydro power energy: Principles of hydro power technology.<br>Ocean current, tidal & wave energy: technology, economics, challenges and R&D.                                         |  |  |  |
| Week 12                         | Mid-Term Exam                                                                                                                                                                                                                           |  |  |  |
| Week 13                         | Ground source and geothermal energy: principles, operation, future scope.                                                                                                                                                               |  |  |  |
| Week 14                         | Biomass and Bioenergy: resources, sustainability, processing, combustion, scope.                                                                                                                                                        |  |  |  |
| Week 15                         | Preparing for the final exam                                                                                                                                                                                                            |  |  |  |
| Learning and Teaching Resources |                                                                                                           |                           |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                                                                      | Available in the Library? |  |  |  |
| Required Texts                  | Solar Energy Engineering, Kalogirou, SA, 2nd Edition,<br>Academic Press, 2013. E-book ISBN 9780123972569. | No                        |  |  |  |
|                                 | Boyle, G., 1996. Renewable energy: power for a sustainable future. (No Title).                            | No                        |  |  |  |
|                                 |                                                                                                           |                           |  |  |  |

| Module Information              |                               |                 |                               |                                  |              |     |  |
|---------------------------------|-------------------------------|-----------------|-------------------------------|----------------------------------|--------------|-----|--|
| Module Title                    | Store and recover energy      |                 | Modu                          | le Delivery                      |              |     |  |
| Module Type                     |                               | Core            |                               |                                  | ⊠Theory      |     |  |
| Module Code                     |                               | <b>RETE 406</b> |                               |                                  | ⊠Lecture     |     |  |
| ECTS                            |                               | 5               |                               |                                  | ⊠Lab         |     |  |
| Credits                         |                               | -               |                               |                                  | □Tutorial    |     |  |
| SWL                             |                               | 125             |                               |                                  | ⊠Practical   |     |  |
| (hr/sem)                        |                               | -               |                               |                                  | ⊠Seminar     |     |  |
| Module Level                    |                               | 4               | Semester of                   | f <b>Delivery</b> 8              |              |     |  |
| Administering                   | ering Department RETE College |                 | College<br>Engine             | e of Oil & Gas '<br>ering/Kirkuk | Techniques   |     |  |
| Module<br>Leader                |                               |                 | e-mail                        |                                  |              |     |  |
| Module Leader                   | r's Acad. Title               | Assist. Lecture | Module Leader's Qualification |                                  | ualification | MSc |  |
| Module<br>Tutor                 |                               |                 | e-mail @ntu.edu.iq            |                                  |              |     |  |
| Peer Reviewer Name Name         |                               | e-mail          | Email                         |                                  |              |     |  |
| Scientific Com<br>Approval Date | mittee                        | 06/01/2023      | Version Number 1.0            |                                  |              |     |  |

| Relation with other Modules |      |          |  |  |  |
|-----------------------------|------|----------|--|--|--|
| Prerequisite module         | None | Semester |  |  |  |

| Co-requisites module | None | Semester |  |
|----------------------|------|----------|--|

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                    |  |  |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                        |                                                                                    |  |  |  |  |  |
|                                                        | -Advanced energy technology driving growing interest in thermal applications       |  |  |  |  |  |
|                                                        | such as space and water heating                                                    |  |  |  |  |  |
| Module Objectives                                      | -types of energy storage technologies available                                    |  |  |  |  |  |
|                                                        | -TES systems have a huge potential to facilitate the most efficient use of thermal |  |  |  |  |  |
|                                                        | equipment and economical large-scale energy alternatives.                          |  |  |  |  |  |
|                                                        | -energy storage Enables electricity to be saved for a later, when and              |  |  |  |  |  |
|                                                        | where it is most needed                                                            |  |  |  |  |  |
|                                                        | -Energy storage can reduce operating costs related to grid power                   |  |  |  |  |  |
| Module Learning                                        |                                                                                    |  |  |  |  |  |
| Outcomes                                               | Able to recognize the energy storage types                                         |  |  |  |  |  |
|                                                        | -Able to recognize the energy storage types                                        |  |  |  |  |  |
|                                                        | -Able to know thermal energy storage methods and their application.                |  |  |  |  |  |
|                                                        | -identify the waste energy recovery                                                |  |  |  |  |  |
|                                                        |                                                                                    |  |  |  |  |  |
|                                                        | -understanding the fundamentals of energy storage                                  |  |  |  |  |  |
| Indicative Contents                                    | -able to know the types of energy storage Mechanical Energy Storage,               |  |  |  |  |  |
|                                                        | Chemical Energy Storage, Biological Storage, Magnetic Storage                      |  |  |  |  |  |
|                                                        | -Identify the application of energy thermal storage                                |  |  |  |  |  |
|                                                        |                                                                                    |  |  |  |  |  |
|                                                        |                                                                                    |  |  |  |  |  |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                       | Type something like: The main strategy that will be adopted in delivering this module<br>is to encourage students' participation in the exercises, while at the same time refining<br>and expanding their critical thinking skills. This will be achieved through classes,<br>interactive tutorials and by considering types of simple experiments involving some<br>sampling activities that are interesting to the students. |  |  |  |

| Student Workload (SWL)<br>The student's academic load is calculated for 15 weeks. |     |                                                           |     |  |
|-----------------------------------------------------------------------------------|-----|-----------------------------------------------------------|-----|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester             | 63  | Structured SWL (h/w)<br>Regular weekly student load       | 4.2 |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester         | 62  | Unstructured SWL (h/w)<br>Irregular student load per week | 4.1 |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester     | 125 |                                                           |     |  |

| Module Evaluation |                |             |                  |          |                              |  |
|-------------------|----------------|-------------|------------------|----------|------------------------------|--|
|                   |                | Time/Number | Weight (Marks)   | Week Due | Relevant Learning<br>Outcome |  |
|                   | Quizzes        | 2           | 10% (10)         | 5 and 10 | LO#2 and 3                   |  |
| Formative         | Assignments    | 2           | 10% (10)         | 2 and 12 | LO#4and6                     |  |
| assessment        | Projects /Lab. | 1           | 10% (10)         | 6        | LO#8                         |  |
|                   | Report         | 1           | 10% (10)         | 13       | LO#11                        |  |
| Summative         | Midterm Exam   | 2hr         | 10% (10)         | 7        | LO#1-7                       |  |
| assessment        | Final Exam     | 3hr         | 50% (50)         | 16       | All                          |  |
| Total assessment  |                |             | 100% (100 Marks) |          |                              |  |

| Delivery Plan (Weekly Syllabus) |                                                                          |  |
|---------------------------------|--------------------------------------------------------------------------|--|
|                                 | Material Covered                                                         |  |
| Week 1                          | Introduction, Fundamental Properties and Quantities                      |  |
| Week 2                          | Mechanical Energy Storage, Chemical Energy Storage                       |  |
| Week 3                          | Biological Storage, Magnetic Storage                                     |  |
| Week 4                          | Hydrogen for Energy Storage                                              |  |
| Week 5                          | Thermal energy storage method                                            |  |
| Week 6                          | Criteria for Thermal energy storage Evaluation                           |  |
| Week 7                          | Thermal energy storage Heating and Cooling Applications                  |  |
| Week 8                          | Thermal energy storage Heating and Cooling Applications                  |  |
| Week 9                          | Types and Features of Various Stratified Thermal energy storage Tanks    |  |
| Week 10                         | Phase Change Materials (PCMs)                                            |  |
| Week 11                         | Cold Thermal Energy Storage                                              |  |
| Week 12                         | Environmental Impact and Thermal energy storage Systems and Applications |  |
| Week 13                         | Thermal energy storage and Energy Savings                                |  |
| Week 14                         | Energy Savings by Cold TES                                               |  |
| Week 15                         | WASTE ENERGY RECOVERY                                                    |  |
| Week 16                         | Preparatory week before the final exam                                   |  |

| Delivery Plan (Weekly Lab. Syllabus) |
|--------------------------------------|
| Material Covered                     |

| Week 1 | Lab 1: Introduction to laboratory & safety |
|--------|--------------------------------------------|
| Week 2 | Lab 2: flat plate solar collector          |
| Week 3 | Lab 3: parabolic concentrating collector   |
| Week 4 | Lab 4: Rock storage                        |
| Week 5 | Lab 5: ice storage                         |
| Week 6 | Lab 6: water storage                       |
| Week 7 | Lab 7: Evacuated Solar Collector           |

| Learning and Teaching Resources |                                                                                                   |                           |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                                                              | Available in the Library? |  |  |  |
| Required Texts                  | Ibrahim DMARosen, thermal energy storage and application,<br>Second. united kingdom: Wiley, 2011. | Yes                       |  |  |  |
| Recommended<br>Texts            |                                                                                                   |                           |  |  |  |
| Websites                        |                                                                                                   |                           |  |  |  |

| Module 42<br>Subject information |                        |                 |  |  |
|----------------------------------|------------------------|-----------------|--|--|
| Module Title                     | <b>Control systems</b> | Module Delivery |  |  |
| Module Type                      | Core                   | ⊠Theory         |  |  |
| Module Code                      | <b>RETE 407</b>        | ⊠Lecture        |  |  |
| ECTS Credits                     | 5                      | ⊠Lab            |  |  |
|                                  |                        | □Tutorial       |  |  |
| SWL (hr/sem)                     | 125                    | ⊠Practical      |  |  |
|                                  |                        | ⊠Seminar        |  |  |

| Module Level 4                        |             | 4               | Semester o                    | f Deliver                                             | У     | 8          |
|---------------------------------------|-------------|-----------------|-------------------------------|-------------------------------------------------------|-------|------------|
| Administering Department              |             | RETE            | College                       | College of Oil & Gas Techniques<br>Engineering/Kirkuk |       | Fechniques |
| Module Leader                         |             | e-mail          |                               |                                                       |       |            |
| Module Leader's                       | Acad. Title | Assist. Lecture | Module Leader's Qualification |                                                       |       |            |
| Module Tutor                          |             |                 | e-mail                        | @ntu.eo                                               | lu.iq |            |
| Peer Reviewer Na                      | ame         | Name            | e-mail                        | Email                                                 |       |            |
| Scientific Committee Approval<br>Date |             | 06/01/2023      | Version Nu                    | umber                                                 | 1.0   |            |

| Relation with other Modules |      |          |  |  |
|-----------------------------|------|----------|--|--|
| Prerequisite module         | None | Semester |  |  |
| Co-requisites module        | None | Semester |  |  |

| Modu                                    | le Aims, Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Module Objectives<br>Subject objectives | <ol> <li>Understanding Measurement Principles: Gain knowledge of measurement principles, including device selection, calibration, and measurement limitations.</li> <li>Familiarity with Control Systems: Learn the basics of control systems, including feedback, closed-loop control, and the role of sensors, actuators, and controllers.</li> <li>Application of Measurement Techniques: Develop practical skills in using measurement techniques and instruments to collect and analyze data in engineering systems.</li> </ol> |  |  |  |
|                                         | 4. System Analysis and Optimization: Acquire the ability to analyze measurement and control systems, identify performance issues, and implement optimization strategies for enhanced system performance.                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Module Learning<br>Outcomes             | <ol> <li>Understand Measurement Principles: Develop a solid understanding of the<br/>fundamental principles of measurement, including accuracy, precision, and<br/>uncertainty. Gain the ability to choose appropriate measurement devices and<br/>methods for different engineering applications.</li> <li>Analyze and Design Control Systems: Acquire the skills to analyze and design<br/>control systems, including feedback loops, controllers, and actuators. Grasp</li> </ol>                                                 |  |  |  |

|                     | <ul> <li>concepts such as stability, transient response, and steady-state error in control systems.</li> <li>3. Apply Measurement Techniques: Gain practical expertise in applying measurement techniques and instruments to collect and analyze data in engineering systems. Utilize statistical methods to effectively analyze and interpret measurement data.</li> <li>4. Troubleshoot and Optimize Systems: Develop the ability to troubleshoot and optimize engineering systems by identifying and rectifying measurement and control issues. Learn techniques for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicative Contents | <ul> <li>Part A:</li> <li>Fundamentals of measurement systems, General Measurement System, Error and uncertainty analysis and Static characteristics of measurement system elements [25 hours]</li> <li>Introduction to control system, Power circuit elements, Principles of electric control and Plc basics [25 hours]</li> <li>Revision Session and Quiz [2 hours]</li> <li>Part B:</li> <li>tutorial of symbols, equipment's and Counters, timers, introduction to inverter [25 hours]</li> <li>Up Counter (CTU), Down Counter (CTD), Latch and Unlatch Logic</li> <li>Memory Concept in Allen Bradley PLC, and Hardware of PLC circuit, review of PLC ladder. [25 hours]</li> <li>Revision Session and Quiz [2 hours]</li> <li>Revised Description: Part A of the Engineering Measurement and Control Systems course provides students with a solid understanding of the fundamental principles in this field. The module bagins by covering the basics of measurement including</li> </ul> |
|                     | different measurement techniques and the use of instruments. Students will then<br>delve into the topic of control systems and explore considerations related to<br>Programmable Logic Controllers (PLCs). To reinforce the concepts learned, a revision<br>session and quiz will be conducted, allowing students to review and assess their<br>understanding. This module serves as a crucial foundation for further studies in the<br>field of Engineering Measurement and Control Systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|            | Learning and Teaching Strategies                                                                                                                                                                                                    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 1. Active Participation: Actively engage in class discussions, ask questions, and contribute to group activities. This will help you better understand the concepts and reinforce your learning.                                    |
| Strategies | 2. Practical Application: Apply the theoretical knowledge to real-world examples and projects. Participate in laboratory sessions and hands-on activities to gain practical experience in measurement and control systems.          |
|            | 3. Problem-Solving Approach: Develop strong problem-solving skills by practicing solving different types of measurement and control problems. Work on assignments and projects that require critical thinking and analytical skills |

| Student Workload (SWL)<br>The student's academic load is calculated for 15 weeks. |    |                                                           |     |  |
|-----------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----|--|
| Structured SWL (h/sem)<br>Regular student load during the<br>semester             | 63 | Structured SWL (h/w)<br>Regular weekly student load       | 4.2 |  |
| Unstructured SWL (h/sem)<br>Irregular student load during the<br>semester         | 62 | Unstructured SWL (h/w)<br>Irregular student load per week | 4.1 |  |
| Total SWL (h/sem)<br>The student's total academic load<br>during the semester     |    | 125                                                       |     |  |

| Module Evaluation |             |                |          |                              |
|-------------------|-------------|----------------|----------|------------------------------|
|                   | Time/Number | Weight (Marks) | Week Due | Relevant Learning<br>Outcome |

|                  | Quizzes        | 2                | 10% (10) | 5 and 10 | LO#2 and 3 |
|------------------|----------------|------------------|----------|----------|------------|
| Formative        | Assignments    | 2                | 10% (10) | 2 and 12 | LO#4and6   |
| assessment       | Projects /Lab. | 1                | 10% (10) | 8        | LO#10      |
|                  | Report         | 1                | 10% (10) | 11       | LO #13     |
| Summative        | Midterm Exam   | 2hr              | 10% (10) | 7        | LO#1-7     |
| assessment       | Final Exam     | 3hr              | 50% (50) | 16       | All        |
| Total assessment |                | 100% (100 Marks) |          |          |            |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                            |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                 | Material Covered                                                                                                                                           |  |
| Week 1                          | Fundamentals of measurement systems - Definition of measurement and instrumentation - Significance of measurement                                          |  |
| Week 2                          | General Measurement System - Functions of instrument in measurements - Calibration and standards                                                           |  |
| Week 3                          | Error and uncertainty analysis <ul> <li>Errors in Measurements</li> <li>Accuracy and precision</li> <li>Sources of errors</li> </ul>                       |  |
| Week 4                          | Static characteristics of measurement system elements -Characteristics of instruments - Static characteristics of measuring system - Environmental effects |  |
| Week 5                          | Introduction to control system                                                                                                                             |  |

|          | - Types of Control System                                              |
|----------|------------------------------------------------------------------------|
|          | - Block Diagrams                                                       |
| Week 6   | Introduction to Block Diagrams                                         |
| WEEKU    | - Block Diagram Reduction Rules                                        |
| Week 7   | Power circuit elements Circuit breaker Overload Relay                  |
| Week 7   | Contactor                                                              |
| Wook 8   | Power circuit elements Circuit breaker Overload Relay                  |
| WEEKO    | Contactor                                                              |
| Week 9   | Types and Features of Various Stratified. Thermal energy storage Tanks |
| Week 10  | Plc basics, tutorial of symbols, equipment's                           |
| Week 11  | Counters, timers, introduction to inverter                             |
| Week 12  | PLC system structure, Basic ladder logic                               |
| Week 12  | Timers, Counters & Comparators                                         |
| Week 13  | Up Counter (CTU), Down Counter (CTD)                                   |
| Wook 14  | Latch and Unlatch Logic                                                |
| VVECK 14 | Memory Concept in Allen Bradley PLC                                    |
| Week 15  | Hardware of PLC circuit, review of PLC ladder                          |
| Week 16  | Preparatory week before the final exam                                 |

| Delivery Plan (Weekly Lab. Syllabus) |                                                                 |  |
|--------------------------------------|-----------------------------------------------------------------|--|
|                                      | Material Covered                                                |  |
| Week 1                               | Over view on the control workshop, tools, and measuring devices |  |

| Week 2  | Knowledge of connection & operation of the measuring devices for temperature, pressure, humidity, fluid flow. |
|---------|---------------------------------------------------------------------------------------------------------------|
|         |                                                                                                               |
| Week 3  | Built electric circuit (power & control) for domestic refrigerator or freezer and checking before             |
|         | operating the circuit.                                                                                        |
| Week 4  | Built electric circuit (power & control) for domestic water cooler and checking before operating the          |
| WCCR 4  | circuit.                                                                                                      |
| Week 5  | Built electric circuit (power & control) for domestic window type A/C for cooling and checking before         |
| WEEKS   | operating the circuit.                                                                                        |
| Week 6  | Built electric circuit (power & control) for domestic window type A/C for cooling & heating, and              |
| WEEKO   | checking before operating the circuit.                                                                        |
| Week 7  | Built electric circuit (power & control) for domestic defrost refrigerator and checking before                |
| Week /  | operating the circuit.                                                                                        |
| Week 8  | Built electric circuit (power & control) for domestic clothes washer and checking before operating            |
|         | the circuit.                                                                                                  |
| Week 9  | Check and calibration of thermal expansion valve.                                                             |
| Week 10 | Check and calibration for the contacts of the electrical contactor & thermal switch.                          |
| Week 11 | Built a control circuit for motor power circuit (ON-OFF) start and stop from one location.                    |
| Week 12 | Built a control circuit for motor power circuit (ON-OFF) start and stop from two deferent locations.          |
| Week 13 | Built a control circuit for motor power circuit (star-delta) rotate in one direction, and the other in        |
| HEER IS | two directions.                                                                                               |
|         |                                                                                                               |

| Learning and Teaching Resources |                                                         |                           |  |
|---------------------------------|---------------------------------------------------------|---------------------------|--|
|                                 | Text                                                    | Available in the Library? |  |
| Required Texts                  | 1. "Measurement and Control Basics" by Thomas A. Hughes | Yes                       |  |

|             | 2. "Principles of Measurement Systems" by John P. Bentley                                        |    |  |  |
|-------------|--------------------------------------------------------------------------------------------------|----|--|--|
|             | <ol> <li>"Industrial Instrumentation and Control Systems" by William</li> <li>C. Dunn</li> </ol> |    |  |  |
|             | 4."Process Control: A Practical Approach" by Myke King                                           |    |  |  |
|             | 1. "Instrumentation and Control Systems Documentation" by                                        |    |  |  |
|             | Fred A. Meier                                                                                    |    |  |  |
|             | 2. "Control Systems Engineering" by Norman S. Nise                                               |    |  |  |
|             | 3. "Automatic Control Systems" by Benjamin C. Kuo and Farid                                      |    |  |  |
| Recommended | Golnaraghi                                                                                       | No |  |  |
| Texts       | 4. "Modern Control Engineering" by Katsuhiko Ogata                                               |    |  |  |
|             | 5. "Instrumentation for Process Measurement and Control" by                                      |    |  |  |
|             | Norman A. Anderson                                                                               |    |  |  |
|             | 6. "Introduction to Control System Technology" by Robert N.                                      |    |  |  |
|             | Bates                                                                                            |    |  |  |
|             | 1. National Instruments: www.ni.com                                                              |    |  |  |
|             | 2. Automation.com: www.automation.com                                                            |    |  |  |
| Wabsitas    | 3. Control Global: www.controlglobal.com                                                         |    |  |  |
| WEDSILES    | 4. ISA - International Society of Automation: www.isa.org                                        |    |  |  |
|             | 5. Omega Engineering: www.omega.com                                                              |    |  |  |
|             | 6. Emerson Automation Solutions: www.emerson.com                                                 |    |  |  |

| Module 43<br>Subject information |                                                                          |                    |  |  |
|----------------------------------|--------------------------------------------------------------------------|--------------------|--|--|
| Module Title                     | Computer-based modeling and<br>simulation of renewable energy<br>systems |                    |  |  |
| Module Type                      | Core                                                                     | ⊠Theory            |  |  |
| Module Code                      | <b>RETE 403</b>                                                          | □ Lecture<br>⊠ Lab |  |  |

| ECTS Credits                          |                     | 8          |                                 | <ul> <li>Tutorial</li> <li>Practical</li> <li>Seminar</li> </ul> |                    |
|---------------------------------------|---------------------|------------|---------------------------------|------------------------------------------------------------------|--------------------|
| SWL (hr/sem)                          |                     | 200        |                                 |                                                                  |                    |
| Module Level                          |                     | 4          | Semester of I                   | Pelivery 8                                                       |                    |
| Administration Department             |                     | RETE       | College                         | College of Oil & Gas Techniques<br>Engineering/Kirkuk            |                    |
| Module Leader                         | Ali Qani N<br>Saleh | Iohammed   | e-mail ali.alkurdi23@ntu.edu.iq |                                                                  | <u>ହntu.edu.iq</u> |
| Module Leader's Acad. Title           |                     | Lecturer   | Module Lead<br>Qualification    | er's                                                             | MSc.               |
| Module Tutor Name (if                 |                     | available) | e-mail                          |                                                                  |                    |
| Peer Reviewer Name                    |                     |            | e-mail                          |                                                                  |                    |
| Scientific Committee Approval<br>Date |                     |            | Version<br>Number               |                                                                  | 1                  |

| Relation with other Modules |          |          |   |  |
|-----------------------------|----------|----------|---|--|
| Prerequisite module         | RETE 402 | Semester | 7 |  |
| Co-requisites module        | None     | Semester |   |  |

| Module Aims, | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims  | <ol> <li>Modeling Proficiency: The aim of this module is to develop students' proficiency in using computer-based modeling techniques to accurately represent and simulate the behavior of energy renewable systems, including solar, wind, hydropower, and biomass. Students will gain the skills to create realistic and dynamic models of these systems.</li> <li>Performance Evaluation and Optimization: This module aims to enable students to assess the performance of renewable energy systems using computer-based models and simulations. Students should be able to identify opportunities for optimization and make informed decisions to enhance the performance, efficiency, and reliability of these systems.</li> <li>Real-World Application: By the end of the module, students should be capable of applying computer-based modeling and simulation techniques to practical scenarios in the renewable energy sector. They will gain the competence to address real-world challenges, evaluate the impact of different factors on system behavior, and contribute to the design, analysis, and optimization of renewable energy projects.</li> </ol> |

|                     | (LO19). Model Development: Students will be able to develop and                                                            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|
|                     | implement computer-based models that accurately represent the                                                              |
|                     | behavior and components of various renewable energy systems,                                                               |
|                     | including solar, wind, hydropower, and biomass.                                                                            |
|                     | (LO20). Simulation Proficiency: Upon completion of the module, students                                                    |
|                     | will possess the skills to use computer-based modeling and simulation                                                      |
|                     | tools to create detailed and dynamic models of energy renewable                                                            |
|                     | systems, allowing for the analysis of system performance under various                                                     |
|                     | conditions                                                                                                                 |
|                     | (1021) Data Collection and Integration: Students will learn to gather                                                      |
|                     | process, and integrate relevant data into their computer-based models                                                      |
|                     | ensuring that their simulations reflect real-world scenarios accurately.                                                   |
|                     | (1022). Performance Evaluation: The module will equip students to                                                          |
|                     | assess the performance and efficiency of renewable energy systems using                                                    |
|                     | computer-based models and simulations, providing insights into system                                                      |
| Module Learning     | behavior.                                                                                                                  |
| Outcomes            | (LO23). Optimization Techniques: Students will gain knowledge of                                                           |
|                     | optimization methods and strategies to enhance the efficiency, reliability,                                                |
|                     | and economic viability of renewable energy systems, considering factors                                                    |
|                     | such as resource availability and load demand.                                                                             |
|                     | (LO24). Grid Integration and Energy Storage: Students will understand                                                      |
|                     | how to simulate the integration of renewable energy systems into the                                                       |
|                     | broader energy infrastructure, considering grid compatibility, energy                                                      |
|                     | storage solutions, and backup systems.                                                                                     |
|                     | (LO25). Scenario Analysis: Graduates of the module will be proficient in                                                   |
|                     | conducting scenario analysis, allowing them to evaluate the resilience                                                     |
|                     | and adaptability of renewable energy systems in different conditions,                                                      |
|                     | including extreme weather events and fluctuating energy demands.                                                           |
|                     | (LO26). Report Generation and Communication: Students will be able to                                                      |
|                     | effectively communicate their simulation results and findings to various                                                   |
|                     | stakeholders, such as project managers, policymakers, and investors.                                                       |
|                     | (LO27). Practical Applications: Upon completion, students should be able                                                   |
|                     | to apply their computer-based modeling and simulation skills to practical                                                  |
|                     | situations in the renewable energy sector, contributing to the design,                                                     |
|                     | analysis, and optimization of real-world renewable energy projects.                                                        |
|                     | Inducative content includes the following.     Introduction to Computer Pased Modeling                                     |
|                     | Register of computer based modeling                                                                                        |
|                     | <ul> <li>Dasics of computer-based modeling</li> <li>Pole of modeling and simulation in renewable energy systems</li> </ul> |
|                     | Note of modeling and simulation in renewable energy systems                                                                |
|                     | Mathematical Modeling rechniques     Differential equations and system representation                                      |
| Indicative Contents | Differential equations and system representation     Development of mothematical models for recoverble systems             |
| indicative contents | Development of mathematical models for renewable systems                                                                   |
|                     | Numerical methods and techniques     Software Tools for Simulation                                                         |
|                     | <ul> <li>SUILWALE TOUIS TOT SITURATION</li> <li>Introduction to simulation software (or MATLAD/Cimulial: DCCAD)</li> </ul> |
|                     | <ul> <li>Introduction to simulation software (eg, WATLAB/Simulifik, PSCAD,<br/>HOMER)</li> </ul>                           |
|                     | Hands-on training with simulation tools                                                                                    |
|                     | <ul> <li>Model development using software</li> </ul>                                                                       |
|                     | <ul> <li>woder development using software</li> </ul>                                                                       |

| Solar Energy System Modeling     Modeling of solar BV systems                                                          |
|------------------------------------------------------------------------------------------------------------------------|
| Modeling of solar PV systems                                                                                           |
| Solar thermal system modeling                                                                                          |
| Simulation of solar irradiance and weather conditions                                                                  |
| Wind Energy System Modeling                                                                                            |
| Wind turbine modeling                                                                                                  |
| • Wind farm modeling                                                                                                   |
| Wind resource assessment and simulation                                                                                |
| Hydropower System Modeling                                                                                             |
| Hydroelectric power plant modeling                                                                                     |
| Run-of-river and dam-based systems                                                                                     |
| Impact of water flow and reservoir levels                                                                              |
| Biomass Energy System Modeling                                                                                         |
| Biomass combustion and gasification modeling                                                                           |
| Biogas and biofuel production simulation                                                                               |
| Resource availability and feedstock analysis                                                                           |
| Geothermal Energy System Modeling                                                                                      |
| Geothermal power plant modeling                                                                                        |
| Geothermal heat pump modeling                                                                                          |
| Ground heat exchanger simulations                                                                                      |
| Data Collection and Integration                                                                                        |
| Gathering relevant data for simulation                                                                                 |
| Data processing and integration into models                                                                            |
| Incorporating real data into simulations                                                                               |
| Performance Evaluation                                                                                                 |
| Assessing the performance of renewable energy systems through                                                          |
| computer-based simulations                                                                                             |
| <ul> <li>Evaluation of system efficiency and reliability</li> </ul>                                                    |
| Optimization Techniques                                                                                                |
| Strategies for optimizing renewable energy system performance                                                          |
| using computer-based tools                                                                                             |
| <ul> <li>Sensitivity analysis and scenario planning for optimization</li> </ul>                                        |
| Grid Integration and Energy Storage                                                                                    |
| <ul> <li>Simulating grid-connected renewable energy systems</li> </ul>                                                 |
| <ul> <li>Modeling energy storage solutions and load balancing</li> </ul>                                               |
| Case Studies and Projects                                                                                              |
| <ul> <li>Analysis of real-world renewable energy projects using computer-<br/>based modeling and simulation</li> </ul> |
| <ul> <li>Group projects and hands-on simulation exercises</li> </ul>                                                   |
| <ul> <li>Sustainability and Environmental Impact Assessment</li> </ul>                                                 |
| <ul> <li>Incorporating sustainability aspects into computer-based<br/>simulations</li> </ul>                           |
| Environmental impact assessments in renewable energy projects                                                          |
| Report generation and communication                                                                                    |
| <ul> <li>Effective communication of simulation results to stakeholders</li> </ul>                                      |

• Presentation of findings and insights

| <ul> <li>Emerging Technologies and Future Trends</li> <li>Exploration of innovative modeling and simulation techniques</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Future trends in the modeling and simulation of renewable energy<br/>systems</li> </ul>                                  |

| Teaching Method 1 - Lectures<br>Description:<br>Attendance Recorded: Yes<br>Teaching Method 2 - Asynchronous on-line course materials<br>Description: Podcasts, videos and articles in thermodynamics<br>Attendance Recorded: No                                                                                                                                                              | Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| StrategiesUnscheduled Directed Student Hours (time spent away from the timetabled<br>sessions but directed by the teaching staff).Teaching Method 3 - Tutorials<br>Description:<br>Attendance Recorded: YesTeaching Method 4 - Practical<br>Description: Practical homework assignments<br>Attendance Recorded: No<br>Unscheduled Directed Student Hours (time spent away from the timetabled | Lea                              | arning and Teaching StrategiesTeaching Method 1 - LecturesDescription:Attendance Recorded: YesTeaching Method 2 - Asynchronous on-line course materialsDescription: Podcasts, videos and articles in thermodynamicsAttendance Recorded: NoUnscheduled Directed Student Hours (time spent away from the timetabledsessions but directed by the teaching staff).Teaching Method 3 - TutorialsDescription:Attendance Recorded: YesTeaching Method 4 - PracticalDescription: Practical homework assignmentsAttendance Recorded: NoUnscheduled Directed Student Hours (time spent away from the timetabled |  |  |

| Student Workload (SWL)                     |        |                                 |       |  |
|--------------------------------------------|--------|---------------------------------|-------|--|
| Structured SWL (h/sem)                     | 93     | Structured SWL (h/w)            | 6.2   |  |
| Regular student load during the semester   | 55     | Regular weekly student load     | 0.2   |  |
| Unstructured SWL (h/sem)                   | 107    | Unstructured SWL (h/w)          | 7 1 2 |  |
| Irregular student load during the semester | 107    | Irregular student load per week | 7.15  |  |
| Total SWL (h/sem)                          |        |                                 |       |  |
| The student's total academic load during   | ng 200 |                                 |       |  |
| the semester                               |        |                                 |       |  |

| Module Evaluation |             |                   |          |                              |
|-------------------|-------------|-------------------|----------|------------------------------|
|                   | Time/Number | Weight<br>(Marks) | Week Due | Relevant Learning<br>Outcome |

|                         | Quizzes        | 5         | 10% (10) | 3,5,7,9 and<br>15 | LO #2, #3, #5 ,#9 and<br>#11 |
|-------------------------|----------------|-----------|----------|-------------------|------------------------------|
| Formative<br>assessment | Assignments    | 4         | 10% (10) | 2,6,8 and<br>12   | LO #4, #8, #6and #10         |
|                         | Projects /Lab. | 4         | 20% (10) | Continuous        | All                          |
|                         | Report         |           |          |                   |                              |
| Summative               | Midterm Exam   | 2 hours   | 10%(10)  | 7                 | LO #1 - #5                   |
| assessment              | Final Exam     | 3 hours   | 50%(50)  | 16                | All                          |
| Total assessment        |                | 100% (100 |          |                   |                              |
|                         |                |           | Marks)   |                   |                              |

|         | Delivery Plan (Weekly Syllabus)                                                                                                                                                          |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 1  | Introduction to Computer-Based Modeling - Overview of the course, Role of modeling<br>and simulation in renewable energy, Introduction to mathematical modeling                          |
| Week2   | Mathematical Modeling Techniques - Basics of differential equations, Development of mathematical models for renewable systems. Numerical methods and techniques                          |
| Week3   | Software Tools for Simulation - Introduction to simulation software (eg, MATLAB/Simulink, PSCAD, HOMER), Hands-on training with simulation tools, Model development using software       |
| Week4   | Solar Energy System Modeling - Modeling of solar PV systems, Solar thermal system modeling, Simulation of solar irradiance and weather conditions                                        |
| Week5   | Wind Energy System Modeling - Wind turbine modeling, Wind farm modeling, Wind resource assessment and simulation                                                                         |
| Week6   | Hydropower System Modeling - Hydroelectric power plant modeling, Run-of-river and dam-based systems, Impact of water flow and reservoir levels                                           |
| Week7   | Biomass Energy System Modeling - Biomass combustion and gasification modeling,<br>Biogas and biofuel production simulation, Resource availability and feedstock analysis                 |
| Week8   | Geothermal Energy System Modeling - Geothermal power plant modeling, Geothermal heat pump modeling, Ground heat exchanger simulations                                                    |
| Week9   | Data Collection and Integration - Gathering relevant data for simulation, Data processing and integration into models, Incorporating real data into simulations                          |
| Week 10 | Performance Evaluation - Assessing the performance of renewable energy systems through computer-based simulations, Evaluation of system efficiency and reliability                       |
| Week 11 | Optimization Techniques - Strategies for optimizing renewable energy system performance using computer-based tools, Sensitivity analysis and scenario planning for optimization          |
| Week 12 | Grid Integration and Energy Storage - Simulating grid-connected renewable energy systems, Modeling energy storage solutions and load balancing                                           |
| Week 13 | Case Studies and Projects - Analysis of real-world renewable energy projects using computer-based modeling and simulation, Group projects and hands-on simulation exercises              |
| Week 14 | Sustainability and Environmental Impact Assessment - Incorporating sustainability aspects into computer-based simulations, Environmental impact assessments in renewable energy projects |
| Week 15 | Report Generation and Communication - Effective communication of simulation results to stakeholders, presentation of findings and insights                                               |

| Learning and Teaching Resources |                                                             |                           |  |  |  |
|---------------------------------|-------------------------------------------------------------|---------------------------|--|--|--|
|                                 | Text                                                        | Available in the Library? |  |  |  |
| Required Texts                  | Renewable Energy Integration: Practical Management of       | No                        |  |  |  |
|                                 | Variability, Uncertainty, and Flexibility in Power Grids by |                           |  |  |  |
|                                 | Lawrence E. Jones                                           |                           |  |  |  |
| Recommended Texts               | Modeling and Simulation for Electrical Power Engineering    | No                        |  |  |  |
|                                 | by Dragan Jovcic and Damir Novosel                          |                           |  |  |  |
|                                 | Computer Simulation in Management Science by Michael        | No                        |  |  |  |
|                                 | Pidd                                                        |                           |  |  |  |
|                                 |                                                             |                           |  |  |  |

| Module 44<br>Subject information     |                |                       |                              |                                |                                                                               |
|--------------------------------------|----------------|-----------------------|------------------------------|--------------------------------|-------------------------------------------------------------------------------|
| Module Title                         | G              | raduation Pro         | ject                         | Module Deliv                   | very                                                                          |
| Module Type                          |                | Core                  |                              | ⊠Theory                        |                                                                               |
| Module Code                          |                | COGTEK 401            |                              | □ Lecture<br>□ Lab             |                                                                               |
| ECTS Credits                         | 6              |                       |                              |                                |                                                                               |
| SWL (hr/sem)                         |                | 150                   |                              | $\boxtimes$ Seminar            |                                                                               |
| Module Level                         | Module Level 4 |                       | Semester of Delivery 8       |                                | 8                                                                             |
| Administration Department            |                | RETE                  | College                      | College of<br>Enginee<br>Techi | f Oil and Gas Techniques<br>ring - Kirkuk, Northern<br>nical University, Iraq |
| Module Leader                        |                | e-mail                | @ntu.edu.id                  | 1                              |                                                                               |
| Module Leader's Acad. Title Assistan |                | Assistant<br>lecturer | Module Lead<br>Qualification | er's                           | M.Sc.                                                                         |
| Module Tutor                         |                | e-mail                |                              |                                |                                                                               |
| Peer Reviewer Name                   |                |                       | e-mail                       |                                |                                                                               |
| Scientific Committee Approval Date   |                |                       | Version<br>Number            |                                |                                                                               |

| Relation with other Modules        |         |          |   |  |
|------------------------------------|---------|----------|---|--|
| Prerequisite module                | NTU 400 | Semester | 7 |  |
| Co-requisites module None Semester |         |          |   |  |

| Module Aims,                | Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims                 | <ol> <li>8. To Understand the significance of scientific research and its role in advancing knowledge.</li> <li>9. To Identify the key characteristics of scientific research.</li> <li>10. This course deals with the basic concept of Formulate research questions and objectives.</li> <li>11. This is the basic subject for all ethical considerations in scientific research</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             | <ol> <li>Recognize the importance of conducting a literature review in research.</li> <li>Familiarize with quantitative and qualitative data collection methods.</li> <li>Understand the principles of experimental design.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Module Learning<br>Outcomes | <ol> <li>Understand the nature and significance of scientific research.<br/>Identify the characteristics and principles of scientific research.<br/>Demonstrate an awareness of ethical considerations in scientific research.</li> <li>Recognize between various research designs.</li> <li>List the various formulate clear research questions and objectives</li> <li>Summarize what is literature review to identify relevant research articles.</li> <li>Design experiments that maximize internal and external validity.</li> <li>Determine the appropriate sample size for a survey based on research objectives.</li> <li>Demonstrate proficiency in employing different approaches to qualitative research.</li> <li>Recognize and apply ethical principles and guidelines in research involving human subjects</li> <li>Communicate research results in a clear and concise manner to different audiences.</li> <li>Formulate a clear and concise research problem statement.</li> </ol> |
| Indicative Contents         | Indicative content includes the following.<br>Part A - Definition and significance of scientific research [5 hrs.]<br>Part B- Research Problem Formulation [5 hrs.]<br>Part C- Research Design and Methodology [5 hrs.]<br>Part D- Literature Review [5 hrs.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Part E- Data Collection and Measurement [5 hrs.] |
|--------------------------------------------------|
| Part F- Homework and Discussion [7 hrs.]         |

| Learning and Teaching Strategies |                                                                                                                                                |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                  | Studying the Methodology of Scientific Research requires a combination<br>of active learning strategies and focused study techniques, such as; |  |  |  |
| Strategies                       | Read the Course Materials, Engage in Discussions, Take Detailed Notes,                                                                         |  |  |  |
|                                  | Work on Exercises and Assignments                                                                                                              |  |  |  |

| Student Workload (SWL)                     |          |                                 |      |  |
|--------------------------------------------|----------|---------------------------------|------|--|
| Structured SWL (h/sem)                     | 63       | Structured SWL (h/w)            | / 13 |  |
| Regular student load during the semester   | 05       | Regular weekly student load     | 4.15 |  |
| Unstructured SWL (h/sem)                   | 07       | Unstructured SWL (h/w)          |      |  |
| Irregular student load during the semester | 07       | Irregular student load per week | 00.0 |  |
| Total SWL (h/sem)                          |          |                                 |      |  |
| The student's total academic load during   | ring 125 |                                 |      |  |
| the semester                               |          |                                 |      |  |

| Module Evaluation |                  |             |                   |              |                              |
|-------------------|------------------|-------------|-------------------|--------------|------------------------------|
|                   |                  | Time/Number | Weight<br>(Marks) | Week Due     | Relevant Learning<br>Outcome |
|                   | Quizzes          | 2           | 10% (10)          | 3,and 9      | LO #10, 11                   |
|                   | Assignments      | 2           | 10% (10)          | 2, and 12    | LO #4 and 7                  |
| Formative         | Projects / Lab.  | 1           | 10% (10)          | Continuous   | All                          |
| assessment        | Lab Report       | 5           | 10% (10)          | 3,7,11,13,14 | LO #5,8,11,13,15             |
| Summative         | Mid Term exam    | 2 hours     | 10% (10)          | 7            | LO #1 - 7                    |
| assessment        | Final Exam       | 3hr         | 50% (50)          | 16           | All                          |
| 100% (100 Marks)  | 100% (100 Marks) |             |                   |              |                              |

| Delivery Plan (Weekly Syllabus) |                                     |  |
|---------------------------------|-------------------------------------|--|
| Week 1                          | Introduction to Scientific Research |  |
| Week 2                          | Research Design                     |  |
| Week 3                          | Literature Review                   |  |
| Week 4                          | Data Collection Methods             |  |

| Week 5  | Data Analysis                             |
|---------|-------------------------------------------|
| Week 6  | Experimental Design                       |
| Weeks 7 | Survey Design and Sampling                |
| Weeks 8 | Qualitative Research Methods              |
| Week 9  | Ethics in Scientific Research             |
| Week 10 | Data Interpretation and Presentation      |
| Week 11 | Peer Review and Publication Process       |
| Week 12 | Research Proposal Writing                 |
| Week 13 | Project Management and Time Planning      |
| Week 14 | Presentations and Research Conferences    |
| Week 15 | Research Ethics Review and Course Wrap-up |

| Learning and Teaching Resources |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
|                                 | Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Available in the Library? |  |
| Required Texts                  | <ol> <li>"Research Design: Qualitative, Quantitative, and Mixed<br/>Methods Approaches" by John W. Creswell and J. David<br/>Creswell</li> <li>"The Craft of Research" by Wayne C. Booth, Gregory G.<br/>Colomb, and Joseph M. Williams</li> <li>"Research Methodology: A Step-by-Step Guide for<br/>Beginners" by Ranjit Kumar</li> </ol>                                                                                                                                              | Yes                       |  |
| Recommended Texts               | Academic Databases: Utilize academic databases such as<br>PubMed, Google Scholar, JSTOR, and IEEE Xplore to search<br>for research papers in the methodology of scientific<br>research. Use relevant keywords such as "research<br>methodology," "scientific research design," or specific<br>methodologies you are interested in (eg, "qualitative<br>research methods," "experimental design").<br>(www.socialresearchmethods.net)<br>(www.researchmethodology.org) (www.gualres.org) | No                        |  |