
1

Ministry of Higher Education and

Scientific Research - Iraq

Northern Technical University

Technical Engineering College Kirkuk

Department of Fuel and Energy

Engineering

MODULE DESCRIPTION FORM

 نموذج وصف المادة الدراسية

Module Information

 معلومات المادة الدراسية

Module Title
Computer Programming

(MATLAB)
Module Delivery

Module Type Core ☒ Theory

 ☒ Lab

 ☐ Tutorial

 ☐ Practical

 ☒ Seminar

Module Code FEK202

ECTS Credits 4

SWL (hr/sem) 100

Module Level UGx11 2 Semester of Delivery 1

Administering Department FEK College COGTEK

Module Leader Layth Ali Hussein e-mail Layth.ali@ntu.edu.iq

Module Leader’s Acad. Title Ass.Lecturer Module Leader’s Qualification M.Sc.

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval
Date

15/09/2024 Version Number 1.0

2

Relation with other Modules

 العلاقة مع المواد الدراسية الأخرى

Prerequisite module None Semester

Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents

 أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

 Module Aims

 أهداف المادة الدراسية

1. Working with the MATLAB user interface.

2. Entering commands and creating variables.

3. Analyzing vectors and matrices.

4. Visualizing vector and matrix data

5. Working with data files.

6. Automating commands with scripts

7. Writing programs with branching and loops.

Module Learning

Outcomes

مخرجات التعلم للمادة

 الدراسية

1. Demonstrate use of mathematical based software to write basic programs
2. Employ computer programs to solve numerical methods problems.#
3. Demonstrate competency of creating computer programs to solve problems

of ordinary differential equations, partial differential equations and
optimization.

Indicative Contents

 المحتويات الإرشادية

Indicative content includes the following.

Part A - Software Engineering

Structural and Functional Modelling, Software Development Life

cycle. Requirements determination, feasibility analysis, final specifications,

hardware and software study system (design –implementation –evaluation–

modification). Role of systems analyst – attributes of a systems analyst – tools

used in system analysis .

Types of information: operational, tactical, strategic and statutory – why do we need

information systems – management structure – requirements of information at

different levels of management – functional allocation of management –

requirements of information for various functions – qualities of information –

small case study .

Part B - Algorithms and Flowcharts

3

Introduction, Symbols, Types of flowcharts, Exercise introduction to Visual studio.

Platform, Environment, Menu Bar, Toolbars, Tool Box, Project explorer, Properties

window, Form designer, Form layout. Design time and run time Fundamentals.

Graphical User Interface, Command Buttons, Label, text box, check box,

option, list box, Timer.

Constants and Variable, Arrays, Arithmetic operators, Expressions - Events,

Properties, Methods - Procedures and Functions – Menus.

Part C - Control Flow Statements:

Condition Statement: If-Then, Select Case. Loop statement: For-Next, Do-while, Do-

Loop While, Exit Loop. Exit and stop statements.

Test phase Debugging, Error Handling

Mashed edit control - Chart controls - Rich text box - Slider - Tabbed Dialog

- Multiple forms - common dialog control.

Creating executable file by Package & Deployment Wizard.

Create the applications for Fluid calculation, Trial and error calculation,

Enthalpy calculation, non-linear equations, and matrix inverse

Learning and Teaching Strategies

 استراتيجيات التعلم والتعليم

Strategies

Type something like: The main strategy that will be adopted in delivering this module

is to encourage students’ participation in the exercises, while at the same time refining

and expanding their critical thinking skills. This will be achieved through classes,

interactive tutorials and by considering type of simple experiments involving some

sampling activities that are interesting to the students.

Student Workload (SWL)

 اسبوعا ١٥الحمل الدراسي للطالب محسوب لـ

Structured SWL (h/sem)

 الحمل الدراسي المنتظم للطالب خلال الفصل
63

Structured SWL (h/w)

 الحمل الدراسي المنتظم للطالب أسبوعيا
4

Unstructured SWL (h/sem)

 الحمل الدراسي غير المنتظم للطالب خلال الفصل
37

Unstructured SWL (h/w)

 الحمل الدراسي غير المنتظم للطالب أسبوعيا
2

Total SWL (h/sem)

 الحمل الدراسي الكلي للطالب خلال الفصل
100

4

Module Evaluation

 تقييم المادة الدراسية

As

Time/Nu

mber
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (10) 5, 10 LO #1, 2, 10 and 11

Assignments 2 10% (10) 2, 12 LO # 3, 4, 6 and 7

Projects / Lab. 1 10% (10) Continuous All

Report 1 10%(10)

Summative

assessment

Midterm Exam 2 hr 10% (10) 7 LO # 1-7

Final Exam 2hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

 المنهاج الاسبوعي النظري

Week Material Covered

Week 1 Introduction, Environment of MATLAB

Week 2 Arithmetic Expressions, Mathematical functions, Logical Operators, Relational Operators.

Week 3 Vectors and Matrices: Matrix operations, transpose and inverse of Matrix

Week 4 Working with polynomials (manipulating polynomials, derivatives roots, eigen values).

Week 5 Working with polynomials (manipulating polynomials, derivatives roots, eigen values).

Week 6 Solve System of Linear Equations by Gauss Elimination Method

Week 7 Solve System of Linear Equations by Gauss Elimination Method,

Week 8
M-file: Create in an M-file, function calling in MATLAB Programming with MATTAB, Use of Built-in

Functions, Input Output, Structured Programming, Nesting and Indentation

Week 9
M-file: Create in an M-file, function calling in MATLAB Programming with MATTAB, Use of Built-in

Functions, Input Output, Structured Programming, Nesting and Indentation

Week 10 Dealing with Errors and Pitfalls.

Week 11
Dealing with Errors and Pitfalls: Syntax Errors. Incompatible vector sizes. Name hiding. Logic and

Rounding Error.

Week 12
Graphic plot: Graphics two-dimensions plots, Log-log and semi-log plots, Histograms plots. Linear

Regression, Curve fitting.

Week 13
Graphic plot: Graphics two-dimensions plots, Log-log and semi-log plots, Histograms plots. Linear

Regression, Curve fitting.

Week 14 Conditions and loops statements: Functions: if, else, else if, while, for, switch, break

5

Week 15 Conditions and loops statements: Functions: if, else, else if, while, for, switch, break

Week 16 Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

 المنهاج الاسبوعي للمختبر

Week Material Covered

Week 1 Lab 1: Introduction, Environment of MATLAB.

Week 2 Lab 2: Arithmetic Expressions.

Week 3 Lab 3: Vectors and Matrices.

Week 4 Lab 4: M-file: Create in an M-file.

Week 5 Lab 5: Graphic plot: Graphics two-dimensions plots.

Week 6 Lab 6: Dealing with Errors and Pitfalls.

Week 7 Lab 7: Conditions and loops statements.

Learning and Teaching Resources

 مصادر التعلم والتدريس

 Text
Available in the

Library?

Required Texts
Mark E. Davis “Numerical method and modelling for

chemical engineers”.
Yes

Recommended Texts
Mathew J.H., Numerical Methods for Mathematics, Science

and Engineering
Yes

Websites https://www.mathworks.com/help/matlab/creating_guis/apps-overview.html

 Grading Scheme
 مخطط الدرجات

Group Grade التقدير Marks (%) Definition

Success Group
(50 - 100)

A - Excellent 100 - 90 امتياز Outstanding Performance

B - Very Good 89 - 80 جيد جدا Above average with some errors

C – Good 79 - 70 جيد Sound work with notable errors

D - Satisfactory 69 - 60 متوسط Fair but with major shortcomings

6

E - Sufficient 59 - 50 مقبول Work meets minimum criteria

Fail Group
(0 – 49)

FX – Fail)(49-45) راسب)قيد المعالجة More work required but credit awarded

F – Fail (44-0) راسب Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark
of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to
condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic
rounding outlined above.

MATLAB (matrix laboratory) is a fourth-generation high-level
programming language and interactive environment for
numerical computation, visualization and programming.

MATLAB - Basic Syntax

MATLAB environment behaves like a super-complex calculator.
You can enter commands at the >> command prompt.

MATLAB is an interpreted environment. In other words, you
give a command and MATLAB executes it right away.

Hands on Practice

Type a valid expression, for example,

5 + 5

And press ENTER

When you click the Execute button, or type Ctrl+E, MATLAB
executes it immediately and the result returned is −

ans = 10

Let us take up few more examples −

3 ^ 2 % 3 raised to the power of 2

When you click the Execute button, or type Ctrl+E, MATLAB
executes it immediately and the result returned is −

ans = 9

Another example,

sin(pi /2) % sine of angle 90o

When you click the Execute button, or type Ctrl+E, MATLAB
executes it immediately and the result returned is −

ans = 1

Genenal Notes

 To type a acommand the cursor must be place next to the command prompt

>> .once a command is type and enter key is pressed the command is

executed.

>>8*(4+2)

ans =48

 .serveral commandcan be type in the same line .this is done by typing a

comma(,) between the commands

>>a=3,b=5,c=a+b

a=3

b=5

c=8

 .if the command is too long to fit in the one line it can be continued to the

next line by typing three periods (...)and pressing the Enter key .the

continuation of the command is then type in the new line

>>d=2+3*4+10/5+...

2*4+2..

d=26

 .if the semicolon(;)is typed at the end of a command the result is not display

>>x=5;

 >>y=20;

>>x*y

ans=100

 It is not possible to go back to a pervious line that is display in the command

windows .to make a correction recall he pervious command by (↑)and

(↓)keys modify then re-execute it.

 When the symbol (%)is type at the beginning of a line the line is designated

as a comment .this means that when the Eneter key is pressed the line not

executed .

>>%this command line used to find the square root of x

>>x=9

>>sqrt(x)

ans=3

 In case of wrong coding the program will produce and alert sound and the

error will be show in red colour

>>sqr(x)

??? Undefined function or variable 'sqr'.(Error red)

 The (clc)command clears all input and output from the command window

display without removing previously defined variables if want to remove all

defined variables then we use (clear)command

 >>clc

 >>clear

Variables Names :

A variable can be named according to the following rules :

 .Must begin with a letter .

 Cannot contain punctuation characters(period ,comma,colon,semicolon,...)

 A#,A,A:,A?,A”,A.

 Error: Missing operator, comma, or semicoerlon.

 Matlab is case-sensitive :it distinguishes between uppercase and lowercase is

desired)

o A≠a and AA≠aa aA≠Aa

 No sapces are allowed between characters(use the underscore where a space

is desired

B ⌂ 2 (error) B_2(√ correct)

 Avoid using the name of a built-in function (cos,sin,sqrt....)

 Or predefined variables (ans,pi,inf)for a variable.Once a function name is used

 for a variable. name the function or the predefine variable cannot be used .

 Keywords(for,while,if,else,end,...)cannot be uesd as variable names

 Predefined variables

Matlab includes a number of predefied variables.some of these variables

Predefine Variables

Matlab includes a number of predefine variable names some of these

variable are summarized below :

Predefine Variables Description

Pi The number pi=3.14

info Used for infinity

I Defined as √−𝟏

NaN Stands for not –Number 0/0=NaN

Defining variable can be defined using the following formula:

Varaible name=A numerical value or a computable expression

X=10----------->Numerical value

X=10+5 ---------------computable expression

Y=15

Notes if a variable already defined typing the variables name and pressing

the enter key will display the variable and its value

If a variable already defined assigning a new value to the variable will

replace its original value

C=15

>>c=15

c=c-10

>>5

Arithmetic opration with Scalars IN MATLAB

operation symbol Example

Addition + 5+2=7

subtration - 5-2=3

Multiplication * 5*2=10

Right division / 5/2=2.5

Left division \ 5\2=0.4

Exponentiation ^ 5^2=25

 Order of precedence

Matlab executes the calculation according to the order of precedence as

follows

precedence Mathematical Opertion

Frist Parentheses

For nested Parentheses the

innermost are executed first

Second Exponentaition

Third Multiplication,(equal precedence)

Fourth Addition and subtraction

Examples:

3*4+5=12+5=17

3*(4+5)=3*9=27

2^3*5=8*5=40

2^(3*5)=2^15=32768

4*5/2=20/2=10

3*4-6/2=12-3=9

Problem

Calculate

Math

matlab

A)

22 + 5.12

50 − 6.52

>> (22+5.1^2)/(50-6.5^2)

>> 6.1948

B)

44

7
+

82

5
+

99

3.92

>> 44/7+8^2/5-99/3.9^2

ans =

 12.5768

c)

(2 + 7)3+
2732/3

2
+

552

3

>>

(2+7)^3+273^(2/3)/2+55^2/3

ans =

 1.7584e+03

H.W

Define the variable x as

x=6.7 then evaluate:

0.01x5-1.4x3 +80x+16.7

Type equation here.

Elementary Built-in function .Afunction has name and an argument in

parenthesses.

for exaple the function that calculate the a square root of a number is

sqrt(x).its name is sqrt and the argument is x.

Function name sqrt(x) Argument (number,define variable,computable

expression)some commonly used function are given in Table below

Elementary math Functions:

Function Description example

Sqrt(x) Square root Sqrt(81)

Ans =9

Exp(x) Exponential EXP(5)

Ans=148.4132

Abs(x) Absolute value(|x|) Abs(-24)

>>24

Log(x) Nature logarith base

logarithm(ln)

Log(1000)

Ans=6.9078

Log10(x) Base 10 logarithm Log10(1000)

Ans=3

Factorial(x) The factorial

function x! x must

be a postive integer

Factorial(5)

Ans =120

Problem Caculate

A)
√412−5.22

𝑒5 −100.53

B)

|√132
3

+
ln (500)

8

c)
37log (76)

73+546 +3!

Solve

A

>> sqrt(41^2-5.2^2)/(exp(5)-100.53)

ans = 0.8493

B)

>> abs(132^(1/3)+log(500)/8)

ans = 5.8685

C)

>> (3^7*log10(76))/(7^3+546)+factorial(3)

ans = 10.6269

function Description Example

Deg2rad Convert angle from

degrees to radians

Deg2rad(60)

>> deg2rad(60)

ans =

 1.0472

Rad2deg Convert angle radians to

degrees

>> sin(pi/6)

ans =

 0.5000

Sin(x) Sine of angle x in radians >> sin(pi/6)

ans =

 0.5000

Cos(x) Cosine of angle x in

radians

>> cos(pi/6)

ans =

 0.8660

Tan(x) Tangent of angle x in

radians

Tan(pi/6)

Sec(x) Secant of angle x in

radians

>> tan(pi/6)

ans =

 0.5774

Sec(x) Cosecant of angle x in

radians

>> Sec(pi/3)

ans =

 2.0000

Csc(x) Cosecantof angle x in

radians

>> CSC(pi/3)

ans =

 1.1547

Cot(x) Cotangent of angle x in

radians

>> cot(pi/3)

ans =

 0.5774

asin(x) Inverse cosine >> asin(0.5)

ans =

 0.5236

acos(x) Inverse cosine(result in

radians

>> acos(0.866)

ans =

 0.5236

atan(x) >> atan(0.5774)

ans =

 0.5236

Sinh(x) Hyperbolic sine of angle x

in radians

>> sinh(pi/6)

ans =

 0.5479

Cosh(x) Hyperbolic cosine of

angle x in radians

>> cosh(pi/6)

ans =

 1.1402

Tanh Hyperbolic of tangent of

angle x in radians

>> tanh(pi/6)

ans =

 0.4805

Problem :calculate

a)cos((
𝟕

𝟗
𝜋) + 𝒕𝒂𝒏 (

𝟕

𝟏𝟓
𝝅)

 solve

>> cos(7*pi/9)+tan(7*pi/15)

ans =

 8.7483

b)sin2(30)+𝒄𝒐𝒔𝟐 (𝟑𝟎)

solve

>> sin(30)^2+cos(30)^2

ans =

 1

H.W

1)cos(
𝟓𝝅

𝟔
)

𝟐

 𝒔𝒊𝒏𝟐 (
𝟕𝝅

𝟖
) +

𝒕𝒂𝒏(
𝝅𝒍𝒏𝟖

𝟔
𝟑𝟓

𝟐

2)sin(𝒄𝒐𝒔−𝟏 𝟑

𝟓
)

3)Trigonometric identity is given by :

 𝒄𝒐𝒔𝟐 𝒙

𝟐
=

𝒕𝒂𝒏𝒙+𝒔𝒊𝒏(𝒙)

𝟐𝒕𝒂𝒏𝒙

For each part verify that identity is correct by calculate the valuee of the left and

right side of the equation substitution x=
𝝅

𝟓

Rounding function

round Round to the nearest

integer

>>Round(18/5)

4

Fix(x) Round toward zero >>Fix(13/5)

2

Ceil(x) Round toward infinity >>ceil(11/5)

3

Floor(x) Round toward minus

infinity

>>floor(-9/4)

-3

Rem(x,y) Return the remainder

after x is divided by y

>>rem(13,5)

3

Sign(x) Return 1 if x >0 and-1

If x<0 and 0 if x=0

>>sign(5)

1

Other function

function description example

rand Random number >> rand

ans =

 0.9501

date Current date >> date

ans =

09-Oct-2023

who List variables in

workspace

>> who

Your variables are:

ans x y

whos List variables in

worksapce withtheir sizes

and types

X=4,y=5

>> whos

 Name Size Bytes Class

 x 1x1 8 double

 y 1x1 8 double

Clear variable name Remove selected

variables

MATLAB® is a high-performance language
for technical computing.
It include
Math and computation

https://github.com/laythinfo/FUE105

 MATLAB System

Development Environment.

•graphical user interfaces
-MATLAB desktop

- Command Window,

-a command history,

-an editor and debugger,

-and browsers for viewing help, the workspace, files, and the search
path.

https://github.com/laythinfo/FUE105

 MATLAB System

 MATLAB Mathematical Function Library.

• computational algorithms ranging from elementary
functions, like sum, sine, cosine,

• complex arithmetic,

• sophisticated functions like matrix inverse, matrix
eigenvalues, Bessel functions, and fast Fourier
transforms.

https://github.com/laythinfo/FUE105

 MATLAB System

• The MATLAB Language. high-level matrix/array
language with control flow statements, functions,

• data structures, input/output,

• object-oriented programming features.

• to create large and complex application programs

https://github.com/laythinfo/FUE105

 MATLAB System

• Graphics.

• displaying vectors and matrices as graphs,.
functions for two-dimensional and three-
dimensional

• data visualization, image processing, animation, and
presentation graphics

https://github.com/laythinfo/FUE105

Matlab

Prompt >>

•command line, indicated by the prompt (>>).

https://github.com/laythinfo/FUE105

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,3)

A(3,1) A(3,3)

A(2,2)

A(3,2)

Matrix 3x3

Row 1

Row 2

Row 3

Column 1 Column 2 Column 3

A(1,1) represent first row and first column in matrix A
A(3,1) represent third row and first column in matrix A and
so on
A(1,1)and A(2,2) and A(3,3) represent Diagonal in Matrix A

https://github.com/laythinfo/FUE105

A(I , j)

To show content of matrix according I and j
A(I,j).
Fx>> A(1,1) Or
Fx>>disp(A(1,1))
Fx>>disp(A(1:3,3))
Fx>>disp(A(3,1:3))

https://github.com/laythinfo/FUE105

Summation Matrices
 • Enter matrix , A=[1 2 3;3 4 5;6 7 8]

• The element in row i and column j of A is denoted by
A(i,j). I and j is Index of matrix

• Sum (matrix,2) summation rows

• Sum(matrix) it will summation columns

• Sum(diag(A))it will summation diagonal of matrix

• sum(diag(fliplr(A))) inverse of diag

https://github.com/laythinfo/FUE105

Transpose matrix

•A’ = transpose matrix

•Make column row and row column

• It will be useful in Multiply Matrices

https://github.com/laythinfo/FUE105

Calculating the Determinant
• For a 2×2 Matrix

 a b
 c d

 |A| = ad − bc
For a 3 x 3 Matrix a b c
 d e f
 g h i

|A| = a(ei − fh) − b(di − fg) + c(dh − eg)
 6 1 1
 |A|= 4 -2 5 = -306= −306

 2 8 7

A =

https://github.com/laythinfo/FUE105

Mathematical Expressions
 Y= e2x in math

Y= exp(2*x) in matlab

F=(1+ 5 (/2

https://github.com/laythinfo/FUE105

Factoring Quadratics

•x2 + 3x − 4
•(x+4)(x-1)
•Roots(x)

https://github.com/laythinfo/FUE105

Row Vector

To create a column vector type the left squre bracket [and then enter the element with

Comma between them or press the enter key after each element. type the right squre

braket]after the last element

> t=[45,46,47,88]

t =

 45 46 47 88

>>

Column Vector

To create a column vector type the left squre bracket [and then enter the element with

semicolon between them or press the enter key after each element. type the right squre

braket]after the last element

Example :

>> t=[45; 46; 74; 88]

t =

 45

 46

 74

 88

Create a vector with constant sapcing by specifying the first term , the spacing and the

last term :

Variable name=[m:q:n] or Variable name =m:q:n=First term

First name last name

 Spacing

Examples

>> x=[1:2:10]

x =

 1 3 5 7 9

y=[20:-2:6]

y =

 20 18 16 14 12 10 8 6

Z=[0:0.1:1]

Z =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Note :the last element in the vector will be the last number that does not exceed n.

n=[2:3:15]

n =

 2 5 8 11 14

Create a vector with equal spacing by specify the first and last term and number of term

Variable name =linspace (xf,xl,n) xf is first element and xl last element and n number of

elemens

a=linspace(-5,16,6)

a =

 -5.0000 -0.8000 3.4000 7.6000 11.8000 16.0000

p=linspace(0,10,6)

p =

 0 2 4 6 8 10

Create A two-Dimensional Array (Matrix)

A matrix is Created by typing the elements raw inside square brackets[type the left braket

[then type the first row separating the elements with spaces or commas .To type the next

row type a semicolon or press Enter .type the right bracket]at the end of last row .

Variable name =[1st row elements ;2nd elements ; 3rd row elements ;last elements]

A=[3 100 4 ; 5 8 10;22 5 20]

A =

 3 100 4

 5 8 10

 22 5 20

Notes

 All the rows must have the same number of elements

 If an element is zero it has to be enter as such.

 The elements that are enter can be numbers or mathematical expressions that may

include numbers predefined variables and functions.

d= 6; e=3 ; h=4 ;

>> M=[e, d*h, cos(pi/3); h^2, sqrt(h*h/d), 14]

Mat =

 3.0000 24.0000 0.5000

 16.0000 1.6330 14.0000

Rows of a matrix can be created from vectors

a=[2 3 4];

b=[4 12 7];

c=[9 12 4];

>> z=[a;b;c]

z =

 2 3 4

 4 12 7

 9 12 4

 Rows of a matrix can also be entered as vectors using the notation for creating vectors

with constant spacing, or the linspace command.

>> A=[0:4:12; linspace(10,40,4); 67 2 43 68]

A =

 0 4 8 12

 10 20 30 40

 67 2 43 68

Creating matrices using the zeros, ones, eye and, rand Commands:

Example

Zr=zeros(2,3)

>> Zr=zeros(2,3)

Zr =

 0 0 0

 0 0 0

The ones (m,n)command creates a squre matrix with n row and n columns in which the

diagonal the elements are equal to 1

V=ones(2,2)

V =

 1 1

 1 1

The eye (n) command creates a square matrix with n rows and n columns in which the

diagonal elements are equal to 1 and the rest of the elements are 0

 Example:

y=eye(3,3)

y =

 1 0 0

 0 1 0

 0 0 1

H.Ws:

1-Define the variables x = 0.85 , y = 12.5 , and then use them to create a column

vector that has the following elements: y , yx , In (y/x) , and x+y.

2-Create a row vector with 11 equally spaced elements in which the first element is

96 and the last element is 2.

3- Create three row vectors: a = [3 -1 5 11 -4 2] , b = [7 -9 2 13 1 -2] , c = [-2 4 -7 8 0

9] Use the three vectors in a MATLAB command to create a 3 x 6 matrix in which

the rows are the vectors a, b, and c

4)Create a row vector that has the following elements:

25.4,2.12+11,6!,2.44 ,0.03,𝝅

The Transpose Operator:

The transpose operator (ꞌ), when applied to a vector, it switches a row vector into a

column vector and vice versa. When applied to a matrix, it switches the rows to columns

(columns to rows).

>> a=[1,2,3]

a =

 1 2 3

>> a'

ans =

 1

 2

 3

Array Addressing (Array Indexing):

Array addressing is a means of recalling an element or a set of elements from the array

based on their position in the array

Vector Addressing:

Vectors can be addressed by using the following formula:

X=[1,4,6,8]

X(n)

 Position of the element

Vector name

>> v=[100,20,30,50,70,2^2]

v =

 100 20 30 50 70 4

>> v(4)

ans =

 50

Notes:

 It is possible to change the value of only one element of a vector by assigning a

new value to a specific address. This is done by typing: v(k) = value.

 A single element can also be used as a variable in a mathematical expression.

>> t=[5;7;8;-1;3;9] ↵

t = 5 7 8 -1 3 9

>> t(4)=2 ↵ (assigning a new value)

t = 5 7 8 2 3 9

>> t(2)+t(5) ↵ (Using elements in a mathematical expression)

ans = 10

>> t(1)^t(4)+sqrt(t(6)) ↵

ans = 28

 A colon can be used to address a range of elements in a vector as follows:

 v(:) → Refers to all the elements of the vector v (either a row or a column vector).

v(p:q) → Refers to elements p through q of the vector v.

 New vectors can be created from existing ones by using a range of elements.

>> u=[4 15 8 12 34 2 50] ↵

u = 4 15 8 12 34 2 50

>> u(:) ↵

ans = 4 15 8 12 34 2 50

>> u(3:6) ↵

ans = 8 12 34 2

>> p=u(1:3) ↵ (creating new vector p)

 p = 4 15 8

H.W

1) Create a row vector with 11 elements such that: (Do not type the vector explicitly.)

 V= 0 2 4 6 8 10 12 9 6 3 0

Matrix Addressing:

Matrices can be addressed by using the following formula:

Matrix_name=M(r,c)

where (r) is number of rows and (c) number if column

>> M=[3 11 6 5; 4 7 10 2; 13 9 0 8] ↵

M =

 3 11 6 5

 4 7 10 2

 13 9 0 8

To display the snd row and thrd postion on Mtrix (M)

 >> M(2,3)

ans =

 10

>> M

M =

 3 11 6 5

 4 7 10 2

 13 9 0 8

>> M(3,3)=20 ↵ (assigning a new value)

M =

 3 11 6 5

 4 7 10 2

 13 9 20 8

>> M(3,2)-M(1,4)

ans =

 4

Notes:

 A colon can be used to address a range of elements in a matrix as follows:

 A(:) → Refers to all the elements of the matrix A.

 A(:,c) → Refers to the elements in all the rows of column c of the matrix A.

 A(r,:) → Refers to the elements in all the columns of row r of the matrix A.

 A(:,c:m) → Refers to the elements in all the rows between columns c and m of

the matrix A.

 A(r:n,:) → Refers to the elements in all the columns between rows r and n of the

matrix A.

 A(r:n,c:m) → Refers to the elements in rows r through n and columns c through

m of the matrix A.

 >> A=[1 3 5 7 ; 2 4 6 8 ; 3 6 9 12] ↵

A =

 1 3 5 7

 2 4 6 8

 3 6 9 12

>> A(:,3)

ans =

 5

 6

 9

>> c=A(2,:)

c =

 2 4 6 8

>> D=A(:,1:3)

D =

 1 3 5

 2 4 6

 3 6 9

E=A(2:3,:)

E =

 2 4 6 8

 3 6 9 12

>> F=A(2:3,3:4)

F =

 6 8

 9 12

>> G= [A(2:3,1:2), A(1:2,3:4)]

G =

 2 4 5 7

 3 6 6 8

>>H= [A(2:3,1:2); A(1:2,3:4)]

H =

 2 4

 3 6

 5 7

 6 8

Adding Elements to Existing Arrays:

>> v=[2 4 6 8]

v =

 2 4 6 8

>> v(5)=10

v =

 2 4 6 8 10

>> v(9:12)=[6 -4 8 1]

v =

 2 4 6 8 10 0 0 0 6 -4 8 1

Adding elements to a matrix:

Rows and/or columns can be added to an existing matrix by assigning values to the new

rows or columns. This can be done by assigning new values, or by appending existing

variables. This must be done carefully since the size of the added rows or columns must

fit the existing matrix.

>> E=[1 5 8;-1 3 0;4 12 -2]

E =

 1 5 8

 -1 3 0

 4 12 -2

>> E(4,:)=[3 -4 16]

E =

 1 5 8

 -1 3 0

 4 12 -2

 3 -4 16

E(:,4)=[3 2 5 4]

E =

 1 5 8 3

 -1 3 0 2

 4 12 -2 5

 3 -4 16 4

Deleting Elements of an array:

An element, or a range of elements, of an existing array can be deleted by reassigning

nothing to these elements. This is done by using square brackets with nothing typed in

between them [].

 >> t=[2 40 65 55 23 15 80]

t =

 2 40 65 55 23 15 80

t(4)=[]

t =

 2 40 65 23 15 80

Using Arrays in MATLAB Built-in Functions:

The built-in functions in MATLAB are written such that when the argument (input) is an

array, the operation that is defined by the function is executed on each element of the

array. The result (output) from such an operation is an array in which each element is

calculated by entering the corresponding element of the argument (input) array into the

function

>> x=[1 2 3 4 5]

x =

 1 2 3 4 5

>> factorial(x)

ans =

 1 2 6 24 120

>> a=0:pi/6:pi

a =

 0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416

>> b=sin(a)

b =

 0 0.5000 0.8660 1.0000 0.8660 0.5000 0.0000

Mathematical Operations with Arrays

 Addition and Subtraction:

Addition (+) and subtraction (-) can be used to add (subtract) arrays (vectors or matrices)

of identical size (have the same numbers of rows and columns). In general, if A and B are

two arrays (for example, 2 x 3 matrices) :

A=
𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑
𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑

B=
𝑩𝟏𝟏 𝑩𝟏𝟐 𝑩𝟏𝟑
𝑩𝟐𝟏 𝑩𝟐𝟐 𝑩𝟐𝟑

then the matrix that is obtained by adding A and B is:

A+B=⌊
𝐴11 + 𝐵11 𝐴12 + 𝐵12 𝐴13 + 𝐵13
𝐴21 + 𝐵21 𝐴22 + 𝐵22 𝐴23 + 𝐵23

⌋

>> A=[5 -3 8; 9 2 10]

A =

 5 -3 8

 9 2 10

>> B=[10 7 4;-11 15 1]

B =

 10 7 4

 -11 15 1

>> C=A+B

C =

 15 4 12

 -2 17 11

>> E=[4 7;3 -2;5 10]

E =

 4 7

 3 -2

 5 10

>> F=A+E

Matrix dimensions must agree.

 Multiplication:

The multiplication operation (*) is executed by MATLAB according to the rules of linear

algebra. This means that if A and B are two matrices, the operation A* B can be carried

out only if the number of columns in matrix A is equal to the number of rows in matrix B.

The result is a matrix that has the same number of rows as A and the same number of

columns as B.

C=A(m,n)*B(p,q)

 n=p

C=(m,q)

For example, if A is a 4 x 3 matrix and B is a 3 x 2 matrix:

A=
1 4 3
2 6 1
5 2 8

B=
5 4
1 3
2 6

A(3,3)*B(3,2)

n=p=3

C=(3,2)=3*2

Exmple

>> A=[1 4 3;2 6 1;5 2 8]

A =

 1 4 3

 2 6 1

 5 2 8

>> B=[5 4;1 3;2 6]

B =

 5 4

 1 3

 2 6

>> A*B

ans =

 15 34

 18 32

 43 74

>> B*A

Error using *

Inner matrix dimensions must agree.

Notes:

 Two vectors can be multiplied only if they have the same number of elements, and

one is a row vector and the other is a column vector.

 The multiplication of a row vector by a column vector gives a 1 x 1 matrix, which is a

scalar.

>> p=[2 5 1]

p =

 2 5 1

>> q=[3;5;8]

q =

 3

 5

 8

>> res=p*q

res =

 39 (1*1)

Notes

The result of the multiplication of two square matrices (A & B) is a square matrix of the

same size. However, the multiplication of matrices is not commutative (A*B ≠ B*A)

 When an array is multiplied by a number (Scalar) each element in the array is

multiplied by this number.

>> A=[2 5 7 0; 10 1 3 4; 6 2 11 5]

A =

 2 5 7 0

 10 1 3 4

 6 2 11 5

>> B=A*5

B =

 10 25 35 0

 50 5 15 20

 30 10 55 25

 Division: The division operation is more complex and can be explained with the help of

the identity matrix, determinant and the inverse operation

Determinant of a matrix (|A|) : The determinant is a useful value that can be computed

from the elements of a square matrix. The determinant of a matrix A is denoted |A|.

|A|=
𝑎11 𝑎12
𝑎21 22

 a11*a22-a12*a21 for exmple
6 5
3 9

6*9-5*3=39

We can calculater the result by matlab by using fuction det(A)

>> A=[6 5;3 9]

A =

 6 5

 3 9

>> det(A)

ans =

 39

Inverse of a matrix (A-1):
 The inverse of a square matrix A, sometimes called a reciprocal matrix, is a matrix A-1 .

If A=
𝑎 𝑏
𝑐 𝑑

 then A-1 =
1

|𝐴|
 =

𝑑 −𝑏
−𝑐 𝑎

 =
1

𝑎∗𝑑−𝑏∗𝑐

For exmple A=
1 2
3 4

 A-1 = 1

1∗4−2∗3
∗ [

4 −2
−3 1

] = 1

−2
∗ [

4 −2
−3 1

] =[
−2 1
1.5 −0.5

]

In matlab

>> A=[1 2;3 4]

A =

 1 2

 3 4

>> inv(A)

ans =

 -2.0000 1.0000

 1.5000 -0.5000

Not every matrix has an inverse.

 A matrix has an inverse only if it is square and

 its determinant is not equal to zero .

>> A=[2 4 5; 6 8 9]

A =

 2 4 5

 6 8 9

>> inv(A)

Error using inv

Matrix must be square.

>> B=[2 1;4 2]

B =

 2 1

 4 2

>> det(B)

ans =

 0

>> c=inv(B)

Warning: Matrix is singular to working precision.

c =

 Inf Inf

 Inf Inf

If the matrix B is the inverse of the matrix A, when the two matrices are multiplied,

the product is the identity matrix (I).

 A * B = I

>> A=[2 1 4; 4 1 8; 2 -1 3];

>> B=inv(A);

>> A*B

ans =

 1 0 0

 0 1 0

 0 0 1

Solving Linear Equations by Matrix Operations:

Linear Equations can be solved by Matrix Operations (Right division, left division

1- Right division (/):

XA = B

X = B / A

or

X*A = B

X*A*A-1 = B * A-1

X*I = B * A-1

X = B * A-1

X=B*inv(A)

Example

4𝑥 − 2𝑦 + 6𝑧 = 8

2𝑥 + 8𝑦 + 2𝑧 = 4

6𝑥 + 10𝑦 + 3𝑧 = 0

Solution: Using the rules of linear algebra, the above system of equations can be solved

by following methods:

1) Right division & Inverse :

The above system of equations can be written in the matrix form

 XA = B as follows:

 (z(و)yال) وكذلك (بشكل افقيxترتب معاملات)ملاحظة /

[X Y Z]

4 2 6
−2 8 2
6 2 3

= [8 4 0]

>> A=[4 2 6; -2 8 10; 6 2 3];

>> B=[8 4 0] ;

>> X=B/A

X =

 -1.8049 0.2927 2.6341

 x y z

Or

>> X=B*inv(A)

 ↵ (Solving by using the inverse of A)

X = -1.8049 0.2927 2.6341

2) Left division & Inverse :

The above system of equations can also be written in the matrix form

AX = B

X = A \ B

Or

A*X = B

A-1 *A*X = A-1 * B

I*X = A-1 * B

X = A-1* B

 X=inv(A)*B

Note use The transpose operator (ꞌ)

[

𝑋
𝑦
𝑧

]

4 −2 6
2 8 2
6 10 3

 = [
8
4
0

]

>> A=[4 2 6; -2 8 10; 6 2 3];

>> A=A '

A =

 4 -2 6

 2 8 2

 6 10 3

>> B=B’

B =

 8

 4

 0

>> A\B

ans =

 -1.8049

 0.2927

 2.6341

Or

X=inv(A)*B

ans =

 -1.8049

 0.2927

 2.6341

H.W

−4𝑥 + 𝑧 + 3𝑦 = −18.2

6𝑦 + 5𝑥 − 2𝑧 = −48.8

4.5𝑧 + 2𝑥 − 5𝑦 = 92.5

Element-by-Element Operations

 Many situations require element-by-element operations. These operations are

carried out on each of the elements of the array (or arrays). Addition and

subtraction are by definition already element-by-element operations.

Notes:

 Element-by-element operations can be done only with arrays of the same size.

 Element-by-element multiplication, division, or exponentiation of two vectors or

matrices is entered in MATLAB by typing a dot in front of the arithmetic operator

Symbol Description

.* Element byelement multiplication

./ Element by element right division

.\ Element byelement left division

.^ Element byelement exponentiation

>> A

A =

 2 6 3

 5 8 4

>> B

B =

 1 4 10

 3 2 7

>> A.*B (Element by element ion multiplication)

>> A

A =

 2 6 3

 5 8 4

>> B

B =

 1 4 10

 3 2 7

>> A.*B

ans =

 2 24 30

 15 16 28

>> C=A./B ↵ (Element-by-element right division)

C =

 2.0000 1.5000 0.3000

 1.6667 4.0000 0.5714

>> C=A.\B ↵ (Element-by-element left division)

C =

 0.5000 0.6667 3.3333

 0.6000 0.2500 1.7500

>> C=A.^B ↵ (Element-by-element exponentiation)

C =

 2 1296 59049

 125 64 16384

>> X=[1:8]

x =

 1 2 3 4 5 6 7 8

>> y=x.^2+4*x

y =

 5 12 21 32 45 60 77 96

Problem:

Classroom Work

 For the function y =
𝒙𝟑 +𝟓𝒙

𝟒𝒙𝟐 −𝟏𝟎
 , calculate the value of y for the

following values of x using element-by-element operations: 1,

3, 5, 7, 9, and 11

Solve)

y = -1.0000 1.6154 1.6667 2.0323 2.4650 2.9241
Problem

H.W

1)For the function y=
(𝒙+𝟕)𝟒

(𝒙+𝟏)√𝒙
 , calculate the value of y for the following

values of x using element-by-element operations: 1.5 , 2.5 , 3.5 , 4.5 ,

5.5 , 6.6.

2)Define x and y as the vectors x = [1 2 3 4 5] and y = [2 4 6 8 10]. Then

use them in the following expressions to calculate z and w using

element-by-element calculations.

Z=
(𝒙+𝒚)𝟐

𝒙−𝒚

Chapter Three

Plotting in MATLAB

To plot the graph of a function, you need to take the following steps −

• Define x, by specifying the range of values for the variable x, for which the function is to be plotted

• Define the function, y = f(x)

• Call the plot command, as plot(x, y)

• Following example would demonstrate the concept. Let us plot the simple
function y = x for the range of values for x from 0 to 100, with an increment of

5.

• Create a script file and type the following code −

• x = [0:5:100];

• y = x;

• plot(x, y)

x = [1 2 3 4 5 6 7 8 9 10];

x = [-100:20:100];

y = x.^2;

plot(x, y)

Adding Title, Labels, Grid Lines and Scaling on the Graph

MATLAB allows you to add title, labels along the x-axis and y-axis, grid lines and also to adjust the axes to spruce up the graph.

• The xlabel and ylabel commands generate labels along x-axis and y-axis.

• The title command allows you to put a title on the graph.

• The grid on command allows you to put the grid lines on the graph.

• The axis equal command allows generating the plot with the same scale factors and the spaces on both axes.

• The axis square command generates a square plot.

 Example

Create a script file and type the following code −

x = [0:0.01:10];

y = sin(x);

plot(x, y), xlabel('x'), ylabel('Sin(x)'), title('Sin(x) Graph'),

grid on, axis equal

Drawing Multiple Functions on the Same Graph

You can draw multiple graphs on the same plot. The following example demonstrates the concept −

Example

Create a script file and type the following code −

x = [0 : 0.01: 10];

y = sin(x);

g = cos(x);

plot(x, y, x, g, '.-'), legend('Sin(x)', 'Cos(x)')

2nd Stage MATLAB

55

plot(x ,y)

Plots :

Plots are a very useful tool for presenting information. This is true in any field, but

especially in science and engineering, where MATLAB is mostly used.

MATLAB has many commands that can be used for creating different types of plots

such as: standard x-y plots, plots with logarithmic and semi-logarithmic axes, polar

plots and three-dimensional mesh and surface plots, and many more.

This chapter describes how MATLAB can be used to create and format many types of

two-dimensional plots and three-dimensional plots.

Two-dimensional Plots:

The plot command is used to create two-dimensional plots. The simplest form of the

command is:

Vector Vector

Note: The arguments x and y are each a vector (one-dimensional array). The two

vectors must have the same number of elements.

Example:

>> x=[1 2 3 4 5 6]; ↵

>> y=[2 4 6 8 10 12]; ↵

>> plot(x,y) ↵

2nd Stage MATLAB

56

Line Style Specifier

solid (default) -

dashed --

dotted :

dash-dot -.

Line Colour Specifier

red r

green g

blue b

cyan c

magenta m

yellow y

black k

Plot Command with Line Specifiers:

The plot appears on the screen in blue, which is the default line colour. The plot

command has additional, optional arguments that can be used to specify the colour and

style of the line and the colour and type of markers. With these options, the plot

command has the following form:

Line specifiers are:

- The line style specifiers are : - The line colour specifiers are:

- The marker type specifiers are:

Marker Type Specifier

plus sign +

circle o

asterisk *

point .

cross x

square s

diamond d

star p

Plot(x , y, ’line specifiers’)

2nd Stage MATLAB

57

Notes:

• The specifiers are typed inside the plot command as strings using ‘ ‘.

• Within the string, the specifiers can be typed in any order.

• The specifiers are optional. This means that none, one, two, or all three types

can be included in a command.

Example:

Plot of a Function:

In many situations, there is a need to plot a given function. This can be done in

MATLAB by using the plot or the fplot command.

>> yr=[1988:1:1994];

>> sal=[1 12 20 22 18 24 27];

↵
↵

>> plot(yr,sal,'--o') ↵

(Plotting with dashed line and circle type

markers)

>>plot(yr,sal,'mp-') ↵

(Plotting with solid magenta line and star

type markers)

2nd Stage MATLAB

58

>> x=0:2:10

x =
↵

0 2 4 6 8 10

>> y=x.^2-10*x+15 ↵
y =

15 -1 -9 -9 -1 15

>> plot(x,y) ↵

>> x=0:0.5:10; ↵

>> y=x.^2-10*x+15; ↵

>> plot(x,y) ↵

• Using plot command:

Example:

Note: Since the plot is made up of segments of straight lines that connect the points, to

obtain an accurate plot of a function, the spacing between the elements of the vector x

must be appropriate.

Example:

• Using fplot command:

The fplot command plots a function with the form y = f(x) between specified

limits. The command has the following form:

fplot(‘function’, [limits] , ‘line specifiers’)

optional

2nd Stage MATLAB

59

polar(theta , radius , ‘line specifiers’)

Example:

Polar Plots:

The polar command is used to plot functions in polar coordinates. The command has

the following form:

vector vector optional

Example:

Plots with Logarithmic Axes:

Many science and engineering applications require plots in which one or both axes

have a logarithmic scale. MATLAB commands for making plots with log axes are:

>> fplot('x^2-10*x+15' , [0 10]) ↵

>> t=linspace(0,2*pi,200);

>> r=3*cos(0.5*t).^2+t;

>> polar(t,r)

↵
↵
↵

2nd Stage MATLAB

60

Commands Description

semilogx(x, y)
Plots y versus x with a log (base 10) scale for the x axis and

linear scale for the y axis.

semilogy(x, y)
Plots y versus x with a log (base 10) scale for the y axis and

linear scale for the x axis.

loglog(x, y) Plots y versus x with a log (base 10) scale for both axes.

Notes:

• The number zero cannot be plotted on a log scale (since a log of zero is not

defined).

• Negative numbers cannot be plotted on log scales (since a log of a negative

number is not defined).

Example:

>> x=linspace(1,60,100);

>> y=2.^(-0.2*x+10);

>> semilogx(x,y)

↵
↵
↵

>> semilogy(x,y) ↵

>> loglog(x,y) ↵

2nd Stage MATLAB

61

Plots with Special Graphics:

Plots Function Example Figure

Vertical Bar Plot bar(x,y) >> yr=[1988:1994];

>> sal=[8 12 20 22 18 24 27];

>> bar(yr,sal)

Horizontal Bar Plot barh(x,y) >> barh(yr,sal,'g')

Stairs Plot stairs(x,y) >> stairs(yr,sal)

Pie Plot pie(x) >>pie(sal)

Histograms hist(y) >> temp=[45 46 50 42 43 42

45 48 50 46 45];

>> hist(temp)

2nd Stage MATLAB

62

Three-dimensional Plots:

Three-dimensional (3-D) plots can be a useful way to present data that consists of more

than two variables. MATLAB provides various options for displaying three-

dimensional data. They include line, surface, mesh plots, and many others.

Line Plots:

A three-dimensional line plot is a line that is obtained by connecting points in three-

dimensional space. A basic 3D plot is created with the plot3 command, which is very

similar to the plot command and has the following form:

plot3(x, y, z, ‘line specifiers’)

optional

Note:

• x, y, z are vectors of the coordinates of the points.

• The three vectors with the coordinates of the data points must have the same

number of elements.

Example:

Mesh and Surface Plots:

Mesh and surface plots are three-dimensional plots used for plotting functions of the

form z = f(x,y). Mesh and surface plots are created in three steps.

• 1st : Create a grid in the x y plane using meshgrid function.

• 2nd: Calculate the value of z at each point of the grid.

• 3rd: Create the plot using mesh and surf functions.

>> t=0:0.1:6*pi; ↵
>> x=sqrt(t).*sin(2*t); ↵
>> y=sqrt(t).*cos(2*t); ↵
>> z=0.5*t; ↵
>> plot3(x,y,z) ↵
>> grid on ↵ (display grids)

2nd Stage MATLAB

63

plot(x, y, u, v, t, h)

Example: Plotting the function 𝑧 =
𝑥𝑦2

𝑥2+𝑦2
over the domain -1 ≤ x ≤ 3 and 1 ≤ y ≤ 4.

Plotting Multiple Graphs in The Same Plot:

In many situations, there is a need to make several graphs in the same plot. This is can

be done by :

• Using the plot Command:

Two or more graphs can be created in the same plot by typing pairs of vectors

inside the plot command as following:

>> x=-1:0.1:3;

>> y=1:0.1:4;

↵
↵

>> [X,Y]=meshgrid(x,y); ↵ (1st step)

>> Z=X.*Y.^2./(X.^2+Y.^2); ↵ (2nd step)

>> mesh(X,Y,Z) ↵ (3rd step)

>> surf(X,Y,Z) ↵

Surface plot of function z

Mesh plot of function z

2nd Stage MATLAB

64

>> x=[-2*pi : pi/10 : 2*pi];

>> y1=sin(x);

>> y2=cos(x);

>> plot(x,y1,'r',x,y2,'g')

↵
↵
↵
↵

>> x=[-2*pi : pi/10 : 2*pi];

>> y1=sin(x);

>> y2=cos(x);

>> plot(x,y1,'r')

>> hold on

>> plot(x,y2,'g')

>> hold off

↵
↵
↵
↵
↵
↵
↵

>> x=[-2*pi : pi/10 : 2*pi];

>> y1=sin(x);

>> y2=cos(x);

>> subplot(2,1,1)

>> plot(x,y1,'r')

>> subplot(2,1,2)

>> plot(x,y2,'g')

↵
↵
↵
↵
↵
↵
↵

Example:

• Using the hold on and hold off Commands:

Example:

Creating Multiple Plots on The Same Window:

Multiple plots can be created on the same window with the subplot command, which

has the form bellow:

This command divides the figure window into m (rows) × n (columns) equal sized regions,

and selects the pth region to receive all plotting commands. The subplots are numbered

from left to right and from top to bottom.

Example:

subplot(m, n, p)

2nd Stage MATLAB

65

Zoom in, zoom out,

pan, rotate and rest the

view.

Insert Title, labels,

legends, arrows, lines

and text boxes.

Open, close and save

figures in other

formats.

Formatting a Plot:

A plot can be formatted interactively in the figure window by clicking on the plot and/or

using the menus.

2nd Stage MATLAB

66

H.w’s:

2) Use the fplot command to plot the function

𝑓(𝑥) = (3𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥)𝑒−0.2𝑥 in the domain -4 ≤ x ≤ 9.

3) Plot the function 𝑓(𝑥) = −3𝑥4 + 10𝑥2 − 3 and its derivative for -4 ≤ x ≤ 3 in one

figure. Plot the function with a red solid line, and the derivative with a green dashed

line.

4) Make a polar plot of the function 𝑟 = 2 sin(3𝜃) 𝑠𝑖𝑛𝜃 for 0 ≤ θ ≤ 2π.

5) Make a 3D mesh plot of the function 𝑧 =
𝑦2

− 2 sin(1.5𝑥) in the domain -3 ≤ x ≤ 3
4

and -3 ≤ y ≤ 3 .

6) Make a 3D surface plot of the function =
−cos(2𝑅)

, where 𝑅 = √𝑥2 + 𝑦2 in the
𝑒0.2𝑅

domain -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5 .

7)

Programming in MATLAB

A program is a sequence of commands. In a simple program the commands are

executed

one after the other in the order they are typed. Many situations, however,

require more

sophisticated programs in which commands are not necessarily executed in the

order

they are typed, or different commands (or groups of commands) are executed

when the

program runs with different input variables.

In this chapter we will learn how to write programs in MATLAB and how to

control

the flow of these programs.

Script Files:

So far all the commands were typed in the Command Window and were

executed when the Enter key was pressed. But the commands in the Command

Window cannot be saved and executed again. In addition, the Command

Window is not interactive.

This means that every time the Enter key is pressed only the last command is

executed, and everything executed before is unchanged.A better way of

executing MATLAB commands is by using Script Files (which is a

list of MATLAB commands that can be edited and executed many times).

Notes About Script Files:

• A script file is opened from (File → New → Script) or (Ctrl+N).

• A script file is executed by (save and run button) or (F5).

• A script file is also executed from command window by typing its name and

press Enter.

• When a script file is executed, the output is displayed in the Command

Window.

• Script files are also called M-files in older versions of MATLAB.

All previous examples can be executed by using script file:

Example : Define the variable x as x = 6.7, then evaluate:

𝑦 = 0.01𝑥5 − 1.4𝑥3 + 80𝑥 + 16.7

Sol:

(open a script file and type the following commands)

x=6.7;

y=0.01*x^5-1.4*x^3+80*x+16.7

(save and run)

(Results in the command window)

y =

 266.6443

Example: For the function 𝒚 =
𝒙𝟑 +𝟓𝒙

𝟒𝒙𝟐−𝟏𝟎

Calculate the value of y for the following

values of x using element-by-element operations: 1 , 3 , 5 , 7 , 9 , 11. Then plot x

versus y.

Sol:

(open a script file)

x=[1:2:11]

y=(x.^3 + 5*x)./(4*x.^2 - 10)

plot(x,y,'r:')

(save and run)

(Results in the command window)

 x =

 1 3 5 7 9 11

y =

 -1.0000 1.6154 1.6667 2.0323 2.4650 2.9241

The Input Command:

There are situations that require asking the user to enter some sort of

information into

the program and to save that information into a variable. This is done by using

the input

command which has the following form:

variable name =input(‘prompt message’)

When the input command is executed, the message is displayed in the

Command

Window prompting the user to enter a value that is assigned to the variable. The

user

types the value and presses the Enter key. This assigns the value to the variable.

Example:

(open a script file)

x=[1:2:11]

y=(x.^3 + 5*x)./(4*x.^2 - 10)

plot(x,y,'r:')

(save and run)

variable name =input(‘prompt message’)

% MATLAB Program to find the area of a triangle

b=input('Enter base of the triangle:')

h=input('Enter height of the triangle:')

area=0.5*b*h

Enter base of the triangle:10 ↵

b =

 10

Enter height of the triangle:15 ↵

h =

 15

area =

 75

Note: The input command can also be used to assign a string to a variable. This

is can

be done by adding an option in the input command that defines the characters

that are

entered as a string. Then the form of the input command will be as followings:

variable name =input(‘prompt message’ , ’s’)

name=input('What is your name?','s')

Output Commands:

MATLAB automatically generates a display when some commands are executed

the output is not displayed if a semicolon is typed at the end of the command).

In additionto this automatic display, MATLAB has several commands that can be

used to generate displays.

 The display Command:

The display command is used to display the value of a variable with its name,

and to display text. The format of the display command is:

Note: To display the value of a variable without its name, the disp command is

used instead of display.

Output Commands:

• The display Command:

The display command is used to display the value of a variable with its name,

and to display text. The format of the display command is:

Note: To display the value of a variable without its name, the disp command is

used

instead of display.

% This program converts a length in feet to meters

% 1ft=0.305m

ft=input('Enter the length in feet (ft)? ');

m=ft*0.305;

display(' ')

display('length in feet (ft)')

disp(ft)

display('length in meters (m)')

disp(m)

Solve

Enter the length in feet (ft)? 45 ↵

length in feet (ft) 45

 length in meters (m) 13.7250

The fprintf Command:

The fprintf Command used to display a mix of text and a number (value of a

variable) in the same line, the fprintf command has the form:

fprintf (‘text as string %g additional text’ , variable Value)

 The spot where the text is inserted

 x=input('Enter the value of x ?');

y=x^2+x-4;

fprintf('The value of y is equal to %g',y)

Enter the value of x ?5 ↵

The value of y is equal to 26

Relational and logical operators

are operators that produce a true or false result. These operators are very

important, because they control which code gets executed in MATLAB program.

- Relational Operators:

A relational operator compares two numbers (e.g., 5 < 8) by determining

whether a comparison statement is true or false. If the statement is true, it is

assigned a value of 1. If the statement is false, it is assigned a value of 0

Relational
operator

Description Example

< Less than >> 3 < 4 ↵ ans =1

<= Less than or equal
to

>> 4 <= 4 ↵ ans =1

> Greater than >> 3 > 4 ↵ ans =0

>= Greater than or
equal to

>> 5>=4 ↵ ans =1

== == Equal to >> 3 == 4 ↵ ans =0

~= Not Equal to >> ~5=4 ↵ ans = 1

Notes: • Equal to (==) relational operator consists of two= signs (with no space

between them), since one = sign is the assignment operator. • There is no space

between the relational operators that consist of two characters (<=,>=, ~=). •

Relational operators are used as arithmetic operators within a mathematical

expression.

 Example:

>>y=(6<10)+(7>8)+(5*3==60/4)

 y = 2

Conditional Statements:

A conditional statement is a command that allows MATLAB to make a decision

of whether to execute a group of commands that follow the conditional

statement, or to skip these commands.

There are two types of conditional statements the

 if statement and the switch-case

statement.

1-The if Statement:

In a conditional if statement, a conditional expression is stated. If the expression

is true ,a group of commands that follow the statement are executed. If the

expression is false ,the computer skips the group.

The basic form of a conditional if statement is:

conditional constructs conditional expression

Group of MATLAB commands

end

The if statement is commonly used in three structures,

• if- end,

• if -else-end,

• if -elseif -else-end.

Expression consists of

relational and/or logical

operators { a>b, a==b, b<=a

(a<3) & (b~=0) }

{ if, if-else,

if-elseif }

• The if- end Structure:

The structure of the if- end conditional statement is shown in the figure below

As the program executes, it reaches the if statement. If the conditional

expression in the

• if statement is true (1), the program continues to execute the

commands that follow the the end.

• if statement. If the conditional expression is false (0), the program

skips the group of commands between the if and the end, and

• continues with the commands that follow

Example % MATLAB program to test whether a number is positive or not

x=input('Enter a number: ');

if x>0

 display('The number is positive')

end

Problem:

A worker is paid according to his hourly wage up to 40 hours, and 50%

more for overtime. Write a program in a script file that calculates the pay to a

worker. The program asks the user to enter the number of hours (h) and the

hourly wage (w). The program then displays the pay.

Solution

• working hours ≤ 40 → pay = h*w

• working hours > 40 → pay=h*w+(h-40)*0.5*w

% MATLAB program that calculates the pay to a worker.

h=input('Please enter the number of hours worked: ');

w=input('Please enter the hourly wage in $: ');

pay=h*w;

if h>40

pay=h*w+(h-40)*0.5*w;

end

display(' ')

fprintf('The worker''s pay is $ %g\n',pay)

Please enter the number of hours worked: 35 ↵

Please enter the hourly wage in $: 8 ↵

The worker's pay is $ 280

(Re execute)

Please enter the number of hours worked: 50 ↵

Please enter the hourly wage in $: 10 ↵

The worker's pay is $ 550

• The if - else-end Structure:

The if - else-end structure is shown in Figure below:

 As the program executes, if the conditional expression is true,

the program executes group 1 of commands between the if and the else

statements and then skips to the end. If the conditional expression is false, the

program skips to the else and then executes group 2 of commands between the

else and the end

% MATLAB program to test whether an integer number is

% even or odd

x=input('Enter an integer number:');

if rem(x,2)==0

 display('The number is even')

else

 display('The number is odd')

end

Enter an integer number:12 ↵

The number is even

(Re execute)

Enter an integer number:3 ↵

The number is odd

• The if -elseif -else-end Structure:

The if -elseif -else-end structure is shown in Figure below:

If the conditional expression is true, the program executes group 1 of commands

between the if and the elseif statements and then skips to the end. If the

conditional expression in the if statement is false, the program skips to the elseif

statement. If the conditional expression in the elseifstatement is true, the

program executes group 2 of commands between the elseif and the else and

then skips to the end. If the conditional expression in the elseif statement is

false, the program skips to the else and executes group 3 of commands between

the else and the end.

Notes:

• Several elseif statements can be added.

• The else statement is optional

% MATLAB program to check number is positive, negative

% or zero

x=input('Enter a number: ');

if x==0

 display('The number is zero')

elseif x>0

 display('The number is positive')

else

 display('The number is negative')

end

Enter a number: 4 ↵

The number is positive

(Re execute)

Enter a number: -6.5 ↵

The number is negative

(Re execute)

Enter a number: 0 ↵

The number is zero

The switch-case statement:

The switch-case statement is another method that can be used to direct the flow

of a program. The structure of the statement is shown in Figure below:

As the program executes, The value of the switch expression in the switch

command is compared with the values that are next to each of the case

statements. If a match is found, the group of commands that follow the case

statement with the match are executed. If no match is found and the otherwise

statement (which is optional) is present, the group of commands between

otherwise and end is executed

% MATLAB program to check number is positive, negative % or zero

x=input('Enter a number: ');

s=sign(x);

switch s

 case 0

 display('The number is zero')

 case 1

 display('The number is positive')

 case -1

 display('The number is negative')

end

Enter a number: 24 ↵

The number is positive

(Re execute)

Enter a number: -15.5 ↵

The number is negative

(Re execute)

Enter a number: 0 ↵

The number is zero

Loop Statements:

There may be a situation when you need to execute a block of code many times.

A loop statement allows us to execute a command or group of commands

several times. MATLAB has two kinds of loops: for-end loops and while-end

loops.

• for-end Loops: In for-end loops the execution of a command, or a group of

commands, is repeated a predetermined number of times. The form of a for-end

loop is shown in the Figure below:

This is an example of for loop statement

for x=1:3:10

y=x^2

end

y= 1

y = 16

 y = 49

y = 100

Problem: Use a for-end loop in a script file to calculate the sum of the first n

terms of the series:

∑
(−𝟏)𝒌𝒌

𝟐𝒌
𝒏
𝒊=𝟎

Execute the script file for n = 20

% MATLAB program to find the sum of series

n=input('Enter the number of terms:');

s=

0;

for k=1:n

 s=s+(-1)^k*k/(2^k);

end

fprintf('The sum of the series is: %g\n',s)

Enter the number of terms:20

The sum of the series is: -0.222216

