Northern Technical University

Oil \& Gas technologies engineering- Kirkuk

Department of Renewable Energy Techniques Engineering

Lecturer: Dr. Afrah Turki Awad

Level 1 (2023-2024)

First Semester

مبادى ع علم الهندسة الميكانيكية د.أفراح تركي

اللمادة: الميكانيك الهناسي المستوى الاول المحاضرة الاولىى

Mechanics I- Static
$1^{\text {st }}$ level
$1^{\text {st }}$ Lecture

Outlines

1.1 Basic fundamentals of Mechanics.
1.2 Basic terms.
1.3 Laws of Mechanics.
1.4 Units and dimensions of quantities.
1.5 Units and their relations.
1.6 Example.

1.1 Basic fundamentals of Mechanics:

- Mechanics: is a physical science which concerned with the state of bodies that are influenced by forces.

1.1 Basic fundamentals of Mechanics:

- Deformable bodies mechanics can be considered when the shape of the body is important.
- Rigid bodies mechanics mean that the body keeps the same shape after applying force.

1.1 Basic fundamentals of Mechanics:

- Statics: investigates the equilibrium of bodies that are either at rest or move with constant velocity.
- Dynamics: is other branch of mechanics. In contrast to the static, it deals with accelerated motion of bodies under effect of external forces.

1.1 Basic fundamentals of Mechanics:

- Vector quantity: is the quantity that has magnitude and direction, for example: velocity, acceleration, displacement, distance, weight, force.
- Scalar quantity: is the quantity that has only magnitude, for instance: time, size, density, volume.
- Force: is the action that changes or tends to change the state of motion of the body.

1.2 Basic terms

- Mass: is the quantity of the matter owned by body. It cannot be changed unless the body damages and lost part of it.
- Length: is used to measure the linear distances.
- Time: is the measurements of the succession of events.

1.2 Basic terms

- Displacement: is the distance moved by the body in a specified direction.
- Velocity: can be defined as the rate of change of displacement with respect to time.
- Acceleration: is the rate of change of velocity with respect to time.

1.3 Laws of Mechanics

i. Newton's first law:

With no outside forces, a stationary object will not move

With no outside forces, a moving object will not stop

1.3 Laws of Mechanics

ii. Newton's second law: if an external force acts on a particle, the particle will be accelerated in the direction of the force.

The magnitude of the acceleration will be directly proportional to the force and inversely proportional to the mass of the particle.

1.3 Laws of Mechanics

According to Newton's second law,

- Force $=$ rate of change of momentum.
- momentum $=$ mass \times velocity, $\quad($ mass do not change $)$,

Force $=$ mass \times rate of change of velocity
i.e., Force $=$ mass \times acceleration

$$
\mathbf{F}=\mathbf{m} \times \mathbf{a}
$$

1.3 Laws of Mechanics

iii. Newton's third law: states that for every action there is an equal reaction with opposite direction.

Every action has equal and opposite reaction.

1.4 Units and dimensions of quantities

- There are four systems of units used for the measurement of physical quantities:

1. FPS (Foot - Pound - Second) system
2. CGS (Centimeter - Gram - Second) system
3. MKS (Meter - Kilogram - Second) system
4. SI (System International).

Table (1-1) shows the SI units

Quantity	Units in SI system
Length	m
Mass	kg
Area	m^{2}
Volume	m^{3}
Velocity	$\mathrm{m} \cdot \mathrm{sec}^{-1}$
Acceleration	$\mathrm{m} \cdot \mathrm{sec}^{-2}$
Momentum	$\mathrm{kg} \cdot \mathrm{m}^{-\mathrm{sec}^{-1}}$
Stress	$\mathrm{kg} \cdot \mathrm{m}^{-1} \cdot \mathrm{sec}^{-2}$
Force	$\left.\mathrm{N} \mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{sec}^{-2}\right)$
Power	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{sec}^{-3}$
Density	$\mathrm{kg} \cdot \mathrm{m}^{-3}$

1.5 Units and their relations

Table (1-2) shows the SI and U. S. units

Quantity	Symbol	SI unit		U.S customary unit	
		Unit name	Symbol	Unit name	Symbol
Mass	M	Kilogram	kg	Slug	slug
Length	L	Meter	m	Foot	ft
Time	T	Second	s	Second	Sec
Force	F	Newton	N	pound	lb

Table (1-3) shows the units conversions

1 m	100 cm
1 in	2.54 cm
1 m	1000 mm
1 ft	12 in
1 km	1000 m
1 mile	1609.1 m
1 yard	3 ft
1 kg	$2.204 \mathrm{lb}(\mathrm{pound})$
1 ton	1000 kg

1.6 Example:

Example 1

Determine the weight in newtons of a car whose mass is 1400 kg . Convert the mass of the car to slugs and then determine its weight in pounds. (Knows that 1 slug $=14.594 \mathrm{~kg}$, and $\mathrm{g}=9.81 \mathrm{~m} . \mathrm{sec}^{-2}$, and in British unit $\mathrm{g}=32.2 \mathrm{ft} . \mathrm{sec}^{-2}$).

1.6 Example:

Solution:

According to the Newton second law:

$$
\begin{aligned}
& \mathrm{F}=\mathrm{mg} \\
& \mathrm{~F}=1400 * 9.81=13734 \mathrm{~N}
\end{aligned}
$$

$\mathrm{m}=1400 \mathrm{~kg}$ [1 slug/ 14.594 kg]
$\mathrm{m}=95.93$ slugs

1.6 Example:

Solution:
$\mathrm{F}=\mathrm{mg}$
$\mathrm{F}=95.93^{*} 32.2$
$\mathrm{F}=3088.9 \mathrm{Ib}$

The vectors ($2^{\text {nd }}$ lecture)

2.1 Vectors and force analysis:

A vector is shown graphically by an arrow. The length of the arrow represents the magnitude of the vector, and the angle between the vector and a fixed axis defines the direction of its line of action. The head or tip of the arrow indicates the sense of direction of the vector.

2.2 The rectangular form of vector in 2-Dimensions:

The rectangular form of vector in 2-Dimensions can be written as follows:

$$
\vec{A}=\mathrm{Ax} \mathrm{i}+\mathrm{Ay} \mathrm{j}
$$

The magnitude of the resultant vector can be found by:
$\mathrm{A}=\sqrt{A x^{2}+A y^{2}}$
The x and y components can be found by the following equations:
$A x=A \cos \theta$
$A y=A \sin \theta$
The direction of vector is found by:
$\tan \theta=\frac{A y}{A x}$
$\theta=\tan ^{-1} \frac{A y}{A x}$
The unit vector is:
$\mathrm{n}=\frac{\vec{A}}{A}$

2.3 Vector Operations (Vectors' addition):

Parallelogram law

As a special case, if the two vectors A and B are collinear (both have the same line of action), the parallelogram law reduce to an algebraic or scalar addition:
$\mathrm{R}=\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$

STEP 2

2.4 Cosine Law and Sine law:

The cosine law and sine law are applicable to compute angles and sides of a triangle.

- Law of cosines: $C=\sqrt{A^{2}+B^{2}-2 A \cdot B \cos C}$
- Law of sines: $\frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin c}$

2.3 Resolution of force

The analysis of force F to its x and y components are:
$\mathrm{Fx}=\mathrm{F} \cos \theta$
$\mathrm{Fy}=\mathrm{F} \sin \theta$
$\mathrm{F}=\sqrt{F x^{2}+F y^{2}}$

$\tan \theta=\frac{F y}{F x} \quad, \quad \theta=\tan ^{-1}\left(\frac{F y}{F x}\right)$

- توزيع الزو ايا على مخطط الاعداد xy axis

ملاحظة / إذا كان جواب الز اوية موجب (+) فترسم الز اوية ابتداءاً من المحور X وبعكس عقارب الساعة.

Examples

Example (1): Determine the angle made by the vector $\vec{V}=-10 i+$ 24 j with the positive x -axis. Write the unit vector (n) in the direction of V.

Solution:

$$
\begin{aligned}
& \mathrm{V}=\sqrt{A x^{2}+A y^{2}} \\
& \mathrm{~V}=\sqrt{10^{2}+24^{2}}=26 \\
& \tan \theta=\mathrm{Ay} / \mathrm{Ax} \\
& \tan \theta=24 /(-10) \\
& \theta=112.6^{0} \\
& \mathrm{n}=\frac{\vec{V}}{V} \\
& \mathrm{n}=\frac{-10 i+24 j}{26} \\
& \mathrm{n}=-0.385 \mathrm{i}+0.923 \mathrm{j}
\end{aligned}
$$

Example (2): Write the vector in a rectangular form if $A=5 \mathrm{~N}$ and $\theta=36.8^{\circ}$

A_{x}

Solution:

$\mathrm{Ax}=\mathrm{A} \cos \theta$
$\mathrm{Ax}=5 \cos 36.8^{0}$
$A x=4 N$
$\mathrm{Ay}=\mathrm{A} \sin \theta$
$\mathrm{Ay}=5 \sin 36.8^{0}$
Ay $=3 \mathrm{~N}$

The vector in a rectangular form:
$A=A x i+A y j$
$A=4 i+3 j$

Example (3):- Determine the $\mathrm{X}(\mathrm{Fx})$ and Y (Fy) components of 4 N as shown in figure below.

Solution:-

$$
\begin{aligned}
& \mathrm{Fx}=\mathrm{F} \cos 30 \\
& \therefore \mathrm{Fx}=4 \cos 30=+3.46 \mathrm{~N} \quad+\longrightarrow \\
& \quad \mathrm{Fy}=\mathrm{F} \sin 30 \\
& \therefore \mathrm{Fy}=4 \sin 30=+2 \mathrm{~N}
\end{aligned}
$$

Example (4): Determine the X (Fx) and Y (Fy) components of 200 N force as shown in the below figure, when $\theta=220^{\circ}$.

Solution:

$\mathrm{Fx}=\mathrm{F} \cos \theta$
$\mathrm{Fx}=200 \cos 220^{\circ}$
$\mathrm{Fx}=-153.2 \mathrm{~N}$
$\mathrm{Fx}=153.2 \mathrm{~N} \longleftarrow$
$\mathrm{Fy}=\mathrm{F} \sin \theta$

$\mathrm{Fy}=200 \sin 220^{\circ}$
Fy $=-128.55 \mathrm{~N}$
$F y=128.55 \mathrm{~N} \downarrow$

Other way for solution:
Angle $=220-180=40^{0}$
$\mathrm{Fx}=\mathrm{F} \cos \theta$
$\mathrm{Fx}=200 \cos 40^{\circ}$
$\mathrm{Fx}=153.2 \mathrm{~N}$
$\mathrm{Fy}=200 \sin \theta$
$\mathrm{Fy}=200 \sin 40^{\circ}$
Fy $=128.55 \mathrm{~N}$

The locations of the force components are in the $3^{\text {rd }}$ quarter (angle more than 180° and less than 270°)

Example (5) find the magnitude and direction of V where $\mathrm{v} 1=65$ and $\mathrm{v} 2=92$ and θ is 140°.

Solution:

Apply the cosine law to find the magnitude

$$
\mathrm{V}=\sqrt{(V 1)^{2}+(V 2)^{2}-2 V 1 V 2 \cos \theta}
$$

$\mathrm{V}=\sqrt{(65)^{2}+(92)^{2}-2 * 65 * 92 * \cos 140}$
$\mathrm{V}=148$

Apply the sine law to find the direction:

$$
\begin{aligned}
& \frac{\sin \alpha}{92}=\frac{\sin 140}{V} \\
& \alpha=24^{\circ}
\end{aligned}
$$

Example (6):- the direction of the force (F) is 30°, find the horizontal component if the vertical component is 30 N ?

Solution:

From the diagram shown:

Fy $=30 \mathrm{~N}$
$\mathrm{Fy}=\mathrm{F} \sin \theta$
$30=F \sin 30$
$\mathrm{F}=60 \mathrm{~N}$
$\mathrm{Fx}=\mathrm{F} \cos \theta$
$\mathrm{Fx}=60 * \cos 30$
$\mathrm{Fx}=51.96 \mathrm{~N}$

Example (7): Determine the X and Y components of 200 N force with angle $=330^{\circ}$, as shown in the figure.

Solution:-

Angle $=360-330=30^{\circ}$
$\mathrm{Fx}=\mathrm{F} \cos \theta$
$\mathrm{Fx}=200 \cos 30^{\circ}$
$\mathrm{Fx}=173.2 \rightarrow$
$\mathrm{Fy}=\mathrm{F} \sin \theta$
Fy $=100 \mathrm{~N} \downarrow$

Example (8): Determine the (magnitude and direction) of the resultant (R) of two forces as shown in the below figure.

Solution:

$$
\begin{aligned}
& \mathrm{R}=\sqrt{F x^{2}+F y^{2}} \\
& \mathrm{R}=\sqrt{5^{2}+4^{2}}=6.4 \mathrm{kN} \\
& \theta=\tan ^{-1}(4 / 5)=38.66^{\circ}
\end{aligned}
$$

The vectors ($3^{\text {rd }}$ lecture)

3.1 Resultant forces in 2-Dimensions

The resultant forces applied when there are more than one force affects in the $\mathrm{x}-\mathrm{y}$ directions as shown in figure below:
$F x=\sum F x i, \quad F x=F x 1+F x 2$
$\mathrm{Fy}=\sum \mathrm{Fyj}, \quad \mathrm{Fy}=\mathrm{Fy} 1+\mathrm{Fy} 2$

$\mathrm{R}=\sqrt{F x^{2}+F y^{2}}$

The body is in equilibrium, when $\sum \mathrm{F}=0$

3.2 Vector in 3 dimension

The magnitude of the resultant vector can be found by:

$$
\mathrm{A}=\sqrt{(A x)^{2}+(A y)^{2}+(A z)^{2}}
$$

Examples

Example (9): Determine the (magnitude and direction) of the resultant (R) of two forces as shown in Figure below.

Solution:

Force	Components in the X direction	Components in the Y direction
F_{1}	$\mathrm{F}_{1} \mathrm{X}=800 \cos 40^{\circ}=612.83 \mathrm{~N}$	$\mathrm{F}_{1} \mathrm{y}=800 \sin 40=514.23 \mathrm{~N}$
F_{2}	$\mathrm{F}_{2} \mathrm{x}=-600 \cos 23^{\circ}=-552.3 \mathrm{~N}$	$\mathrm{F}_{2} \mathrm{y}=600 \sin 23^{\circ}=234.43 \mathrm{~N}$
المجهوع	$\mathrm{Rx}=\sum \mathrm{Fx}=\mathrm{Fx} 1+\mathrm{Fx} 2$	$\mathrm{Ry}=\sum \mathrm{Fy}=\mathrm{Fy} 1+\mathrm{Fy} 2$
المجموع	$\mathrm{Rx}=\sum \mathrm{Fx}=60.53 \mathrm{~N} \longrightarrow$	$\mathrm{Ry}=\sum \mathrm{Fy}=748.66 \mathrm{~N} \uparrow$

$$
\begin{aligned}
& \mathrm{R}=\sqrt{R x^{2}+R y^{2}} \\
& \mathrm{R}=\sqrt{(60.53)^{2}+(748.66)^{2}} \\
& \mathrm{R}=751.1 \mathrm{~N} \\
& \theta=\tan ^{-1}(\mathrm{Ry} / \mathrm{Rx}) \\
& \theta=\tan ^{-1}(748.66 / 60.53) \\
& \theta=85.37^{\circ}
\end{aligned}
$$

Example (10):

Determine the (magnitude and direction) of the resultant of the force system.

Solution:

Force	Components in the X direction	Components in the Y direction
F_{1}	$\mathrm{~F}_{1} \mathrm{x}=-6 \cos 15^{\circ}$	$\mathrm{F}_{1} \mathrm{y}=-6 \sin 15$
$\mathrm{~F}_{2}$	$\mathrm{~F}_{2} \mathrm{x}=-4 \cos 45^{\circ}$	$\mathrm{F}_{2} \mathrm{y}=4 \sin 45^{\circ}$
عالمجمو	$\mathrm{Rx}=\sum \mathrm{Fx}=\mathrm{Fx} 1+\mathrm{Fx} 2$	$\mathrm{Ry}=\sum \mathrm{Fy}=\mathrm{Fy} 1+\mathrm{Fy} 2$
المجمو	$\mathrm{Rx}=\sum \mathrm{Fx}=-8.62 \mathrm{kN} \longleftarrow$	$\mathrm{Ry}=\sum \mathrm{Fy}=1.276 \mathrm{kN} \uparrow$

$$
\begin{aligned}
& \mathrm{R}=\sqrt{R x^{2}+R y^{2}} \\
& \mathrm{R}=\sqrt{(-8.62)^{2}+(1.276)^{2}} \\
& \mathrm{R}=8.72 \mathrm{kN} \\
& \theta=\tan ^{-1}(\mathrm{Ry} / \mathrm{Rx}) \\
& \theta=\tan ^{-1}(1.276 /-8.62) \\
& \theta=171.6^{0}
\end{aligned}
$$

Example (11):

Determine the (magnitude and direction) of the resultant of the force system as shown in Figure below.

Solution:
$\mathrm{R}=\mathrm{F}_{1}+\mathrm{F}_{2}-\mathrm{F}_{3}$
$\mathrm{R}=30+5-10$
R=25 kN تتجه دائما باتجاه الأكبر
$\theta=0$
$\theta=\tan ^{-1}(0 / 25)=0$

Example (12):

Determine the (magnitude and direction) of the resultant (R) of the forces system as shown in the figure.

Solution:

$R x=\sum F x$
$R y=\sum F y$

Force	Components in the X direction $\mathrm{X} \text { - axis }$	Components in the Y direction $\mathrm{Y} \text { - axis }$
F_{1}	$+200 \cos 30^{\circ}=+173.2 \mathrm{~N}$	$200 \sin 30^{\circ}=+100 \mathrm{~N}$
F_{2}	$+400 \cos 45^{\circ}=+282.8 \mathrm{~N}$	$400 \sin 45^{\circ}=-282.8 \mathrm{~N}$
F_{3}	$-300 \cos 60^{\circ}=-150 \mathrm{~N}$	$300 \sin 60^{\circ}=-259.8 \mathrm{~N}$
F_{4}	$=-150 \mathrm{~N}$	
المجموع	$\begin{aligned} & \mathrm{Rx}=\sum \mathrm{Fx}=\mathrm{Fx} 1+\mathrm{Fx} 2+\mathrm{Fx} 3+\mathrm{Fx} 4 \\ & =173.2+282.8+(-150)+(-150) \end{aligned}$	$\begin{aligned} & \mathrm{Ry}=\sum \mathrm{Fy}=\mathrm{Fy} 1+\mathrm{Fy} 2+\mathrm{Fy} 3 \\ & =100+(-282.8)+(-259.8) \end{aligned}$
الدجموع	$\mathrm{Rx}=\sum \mathrm{Fx}=+156 \mathrm{~N}$	$\mathrm{Ry}=\sum \mathrm{Fy}=-442.6 \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{R}=\sqrt{(156)^{2}+(-442.6)^{2}}=469.3 \mathrm{~N} \\
& \theta=\tan ^{-1}(\mathrm{Ry} / \mathrm{Rx}) \\
& \theta=\tan ^{-1}(-442.6 / 156) \\
& \theta=-70.6^{\circ}
\end{aligned}
$$

Example (13):

If vectors $A=2 i+4 k$ and $B=5 j+6 k$, determine: (a) what planes do these two vectors exist, and (b) their respective magnitudes. (c) The summation of these two vectors. (d) The subtraction of these two vectors.

Solution:

(a) Vector A may be expressed as $\mathrm{A}=2 \mathrm{i}+0 \mathrm{j}+4 \mathrm{k}$, so it is positioned in the $\mathrm{x}-\mathrm{z}$ plane in the schematic Figure. Vector B on the other hand may be expressed as $B=0 i+5 j$ +6 k with no value along the x -coordinate. So, it is positioned in the $\mathrm{y}-\mathrm{z}$ plane in a rectangular coordinate system.
(b) The magnitude of vector A is:
$\mathrm{A}=\sqrt{(A x)^{2}+(A y)^{2}+(A z)^{2}}$
$\mathrm{A}=\sqrt{(2)^{2}+0+(4)^{2}}$
$\mathrm{A}=4.47$
and the magnitude of vector B is:
$\mathrm{B}=\sqrt{(B x)^{2}+(B y)^{2}+(B z)^{2}}$
$B=\sqrt{0+(5)^{2}+(6)^{2}}$
$\mathrm{B}=7.81$
(c) The addition of these two vectors is:
$A+B=(2+0) i+(0+5) j+(4+6) k$
$=2 \mathrm{i}+5 \mathrm{j}+10 \mathrm{k}$
(d) The subtraction of these two vectors:

$\mathrm{A}-\mathrm{B}=(2-0) \mathrm{i}+(0-5) \mathrm{j}+(4-6) \mathrm{k}$
$=2 \mathrm{i}-5 \mathrm{j}-2 \mathrm{k}$

3.3 The DOT product

Dot product of two vectors \mathbf{A} and \mathbf{B} is expressed as:

$$
\text { A. } \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta=\mathbf{a} \text { scalor }
$$

where θ is the angle between these two vectors.

- We notice that the DOT product of two vectors results in a SCALAR.

The algebraic definition of dot product of vectors can be shown as:

$$
A \cdot B=A x B x+A y B y+A z B z
$$

where Ax, Ay and $\mathrm{Az}=$ the magnitude of the components of vector \mathbf{A} along the $\mathrm{x}-$, y - and z -coordinate respectively,
And Bx, By and $\mathrm{Bz}=$ the magnitude of the components of vector \mathbf{B} along the same rectangular coordinates.
The angle between the two vectors can be found by the equation below:

$$
\cos \theta=(A \cdot B) /(A B)
$$

Example (14) Determine (a) the result of dot product of the two vectors: $\mathbf{A}=2 \mathbf{i}+$ $7 \mathbf{j}+15 \mathbf{k}$ and $\mathbf{B}=21 \mathbf{i}+31 \mathbf{j}+41 \mathbf{k}$, and (b) the angle between these two vectors

Solution:

(a) the result of the dot product of vectors:

$$
\begin{aligned}
& \mathbf{A} \bullet \mathbf{B}=(\mathrm{AxBx})+(\mathrm{AyBy})+(\mathrm{AzBz}) \\
& =(2 * 21)+(7 * 31)+(15 * 41) \\
& =42+217+615
\end{aligned}
$$

Mechanics I - Level 3-3 lecture - Dr. Afrah Turki

$$
=874
$$

(b) In order to get the angle between these two vectors, we need to compute the magnitudes of both vectors:

$$
\begin{aligned}
& \mathbf{A}=\sqrt{\left(2^{2}\right)+\left(7^{2}\right)+\left(15^{2}\right)} \\
& \mathbf{A}=16.67 \\
& \mathbf{B}=\sqrt{\left(21^{2}\right)+\left(31^{2}\right)+\left(41^{2}\right)} \\
& =55.52
\end{aligned}
$$

Which lead to the angle θ between vectors \mathbf{A} and \mathbf{B} to be:

```
cos}0=(A.B)/(AB
cos}0=874/(16.67*55.52
```

$\cos \theta=0.94433$
$\theta=19.21^{0}$

HOWMWORKS

Q1: Determine the X and Y components of (100) N force as in figure below.

Q2: Determine the (magnitude and direction) of the resultant (R) of two forces by the use of (a) cosine and sine laws? (b) The resultant form?

Q3: Determine the (magnitude and direction) of the resultant (R) of two forces.

Q4: Determine the (magnitude and direction) of the resultant (R) of the forces system as shown in Figure below:

Moment

4.1 What is the moment?

By applying a force on the body, it will produce a tendency for the body to rotate about a point is not on the line of action of the force.

- This tendency to rotate the body represents the moment (may also called the moment of a force or sometimes a torque)

$$
\mathbf{M}=\mathbf{F d}
$$

M is the moment of a force (N.m)
F the applied force (N)
d represents the perpendicular distance between the point of action of the force and moment center (O).

4.2 The direction of moment:

- مع عقارب الساعة clockwise (-)
- عكس عقارب الساعة counterclockwise (+)

4.3 The resultant moment:

$$
\mathrm{M}_{\mathrm{Ro}}=\sum \mathrm{M}_{\mathrm{o}}
$$

$$
\mathrm{M}_{\mathrm{R}}=\sum \mathrm{F} \mathrm{~d}
$$

$\mathrm{F}_{\mathrm{R}} \mathrm{d}=(\mathrm{F} 1 \mathrm{~d} 1)+(\mathrm{F} 2 \mathrm{~d} 2)+(\mathrm{F} 3 \mathrm{~d} 3)$

Where: M_{Ro} represent the resultant moment about point $\mathrm{O}(\mathrm{N} . \mathrm{m}), \mathrm{F}_{\mathrm{R}}$ is the resultant force (N), and d is the distance (m)
$\mathrm{F} 1, \mathrm{~F} 2$, and F3 are the component forces (N).
$\mathrm{d} 1, \mathrm{~d} 2$, and d 3 are the perpendicular distances for $\mathrm{F} 1, \mathrm{~F} 2$, and F 3 with point $\mathrm{O}(\mathrm{m})$

Examples

Example (15): determine the magnitude of the moment of the force about point O for the figures shown below:

Solution:

(a) $\mathrm{M}=\mathrm{F} \mathrm{d}$
$\mathrm{M}=-100$ *2
$=-200$ N.m $=200 \mathrm{~N} . \mathrm{m}$

(b) $\mathrm{M}=\mathrm{F} \mathrm{d}$

$$
\mathrm{M}=-50 * 0.75
$$

$$
=-37.5 \mathrm{~N} . \mathrm{m}
$$

$$
=37.5 \mathrm{~N} . \mathrm{m}
$$

(c) $\mathrm{M}=\mathrm{F} \mathrm{d}$

$$
M=-40^{*}(4+2 \cos 30)
$$

$$
=-229 \mathrm{~N} . \mathrm{m}
$$

$$
=229.28 \mathrm{~N} . \mathrm{m}
$$

(d) $\mathrm{M}=\mathrm{F} \mathrm{d}$
$\mathrm{M}=60^{*} 1 \sin 45$
$=42.4 \mathrm{~N} . \mathrm{m}$
(e) $\mathrm{M}=\mathrm{F} \mathrm{d}$
$\mathrm{M}=7$ * (4-1)
$=21 \mathrm{kN} . \mathrm{m}$

Example (16): determine the moment of each of the three forces about point A

Solution:

$\mathrm{F} 1 \mathrm{y}=250 \cos 30$,
$\mathrm{d} 1=2 \mathrm{~m}$
$F 2 y=300 \sin 60$, $\mathrm{d} 2=3+2=5 \mathrm{~m}$
$\mathrm{F} 3 \mathrm{y}=500 \cos 36.87$, $\mathrm{d} 3 \mathrm{x}=3+2=5 \mathrm{~m},$, ,, $\tan \varphi=3 / 4, \quad \varphi=36.87^{\circ}$
$\mathrm{F} 3 \mathrm{x}=500 \sin 36.87$, $d 3 y=4 m$
$\left(\mathrm{M}_{\mathrm{F} 1}\right)_{\mathrm{A}}=\mathrm{F} 1 \mathrm{~d} 1$
$\left(\mathrm{M}_{\mathrm{FI}}\right)_{\mathrm{A}}=-250 \cos 30 * 2 \quad$ (clockwise)
$\left(\mathrm{M}_{\mathrm{F} 1}\right)_{\mathrm{A}}=-433 \mathrm{~N} . \mathrm{m}$

$\left(\mathrm{M}_{\mathrm{F} 2}\right)_{\mathrm{A}}=\mathrm{F} 2 \mathrm{~d} 2$
$\left(\mathrm{M}_{\mathrm{F} 2}\right)_{\mathrm{A}}=-300 \sin 60 * 5 \quad$ (clockwise)
$\left(\mathrm{M}_{\mathrm{F} 2}\right)_{\mathrm{A}}=-1299 \mathrm{~N} . \mathrm{m}$

$\left(\mathrm{M}_{\mathrm{F} 3}\right)_{\mathrm{A}}=\mathrm{F} 3 \mathrm{~d} 3$
$\left(\mathrm{M}_{\mathrm{F} 3}\right)_{\mathrm{A}}=(500 \sin 36.87 * 4)-(500 \cos 36.87 * 5) \quad$ (clockwise)
$\left(\mathrm{M}_{\mathrm{F} 3}\right)_{\mathrm{A}}=-800 \mathrm{~N} . \mathrm{m}$

Mechanics I - Level 1-4 ${ }^{\text {th }}$ lecture - Dr. Afrah Turki

Example (17): determine the moment of each of the force about point O

Solution:

The moment arm d in the above figure can be found from trigonometry

$$
\begin{aligned}
& \frac{d}{\sin 75}=\frac{3}{\sin 90} \\
& d=3 \sin 75 / \sin 90 \\
& d=2.898 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{Mo}=\mathrm{F} \mathrm{~d}
$$

$$
=-5 * 2.898
$$

$$
=-14.5 \mathrm{kN} . \mathrm{m} \supset \text { (clockwise) }
$$

Another way for solution
$\mathrm{Mo}=\mathrm{F} \mathrm{d}$
$=-\mathrm{Fx} \mathrm{dy}-\mathrm{Fy} \mathrm{dx}$
$=-(5 \cos 45)(3 \sin 30)-(5 \sin 45)(3 \cos 30)$
$=-14.5 \mathrm{kN} . \mathrm{m}$ (clockwise)

Example (18): the throttle-control sector pivots freely at O. If an internal torsional spring exerts a return moment $\mathrm{M}=2 \mathrm{~N} . \mathrm{m}$ on the sector when in the position shown, for design purposes determine the necessary throttle-cable tension T so that the net moment about O is zero. Note that when T is zero, the sector rests against the idlecontrol adjustment screw at R.

Solution:

$\mathrm{d}=50 \mathrm{~mm} *(1 \mathrm{~m} / 1000 \mathrm{~mm})$
$\mathrm{d}=0.05 \mathrm{~m}$
F represented by T

$\sum \mathrm{M}=0$
$2+(\mathrm{F} * \mathrm{~d})=0$
$2+(-\mathrm{T} * 0.05)=0$
$0.05 \mathrm{~T}=2$
$\mathrm{T}=2 / 0.05$

$$
\mathrm{T}=40 \mathrm{~N}
$$

Example (19): Determine the resultant moment of the forces shown about point O

Solution:

$$
\begin{array}{ll}
\mathrm{F} 1=-50 \mathrm{~N}, & \mathrm{~d} 1=2 \mathrm{~m} \\
\mathrm{~F} 2=60 \mathrm{~N}, & \mathrm{~d} 2=0 \\
\mathrm{~F} 3=+20 \mathrm{~N}, & \mathrm{~d} 3=(3 \sin 30) \mathrm{m} \\
\mathrm{~F} 4=-40 \mathrm{~N}, & \mathrm{~d} 4=2+2+(3 \cos 30) \mathrm{m} \\
\mathrm{M}_{\mathrm{Ro}}=\sum \mathrm{M}_{\mathrm{o}} & \\
\mathrm{M}_{\mathrm{Ro}}=(\mathrm{F} 1 \mathrm{~d} 1)+(\mathrm{F} 2 \mathrm{~d} 2)+(\mathrm{F} 3 \mathrm{~d} 3)+(\mathrm{F} 4 \mathrm{~d} 4) \\
=(-50 * 2)+(60 * 0)+(20 * 3 \sin 30)+(-40 *(4+3 \cos 30)) \\
\mathrm{M}_{\mathrm{Ro}}=-334 \mathrm{~N} . \mathrm{m} \\
\mathrm{M}_{\mathrm{Ro}}=334 \mathrm{~N} . \mathrm{m}
\end{array}
$$

Example (20): Determine the height h above the base B at which the resultant of the three forces acts.

Solution:

F1 $=-300 \mathrm{~N}$,	$\mathrm{d} 1=1800 \mathrm{~mm}^{*}(1 \mathrm{~m} / 1000 \mathrm{~mm})=1.8 \mathrm{~m}$
$\mathrm{~F} 2=650 \mathrm{~N}$,	$\mathrm{d} 2=1200 \mathrm{~mm}^{*}(1 \mathrm{~m} / 1000 \mathrm{~mm})=1.2 \mathrm{~m}$
$\mathrm{~F} 3=-250 \mathrm{~N}$,	$\mathrm{d} 3=600 \mathrm{~mm}^{*}(1 \mathrm{~m} / 1000 \mathrm{~mm})=0.6 \mathrm{~m}$
$\mathrm{R}=\sum \mathrm{F}$	
$=-300-250+650$	
$=100 \mathrm{~N}$	

$\mathrm{M}_{\mathrm{RB}}=\sum \mathrm{M}_{\mathrm{B}}$
$\mathrm{R} * \mathrm{~h}=\mathrm{F} 1 * \mathrm{~d} 1+\mathrm{F} 2 * \mathrm{~d} 2+\mathrm{F} 3 * \mathrm{~d} 3$
$100 \mathrm{~h}=(-300 * 1.8)+(650 * 1.2)+(-250 * 0.6)$
$\mathrm{h}=0.9 \mathrm{~m}$
Mechanics I - Level 1-4 ${ }^{\text {th }}$ lecture - Dr. Afrah Turki

Example (21): Where does the resultant of the two forces act?

Solution:

$\mathrm{F} 1=-680 \mathrm{~N}$,
$\mathrm{d} 1=800 \mathrm{~mm} *(1 \mathrm{~m} / 1000 \mathrm{~mm})=0.8 \mathrm{~m}$
$\mathrm{F} 1=660 \mathrm{~N}$,
$\mathrm{d} 1=500 \mathrm{~mm} *(1 \mathrm{~m} / 1000 \mathrm{~mm})=0.5 \mathrm{~m}$
$\mathrm{R}=\sum \mathrm{F}$
$=660-680$
$=-20 \mathrm{~N}$
$\mathrm{M}_{\mathrm{RA}}=\sum \mathrm{M}_{\mathrm{A}}$
R d= F1 d1 + F2 d2

$\mathrm{M}_{\mathrm{RA}}=(-680 * 0.8)+(660 * 0.5)$
$M_{R A}=-214$ N.m
$-20 \mathrm{~d}=-214$
$\mathrm{d}=10.7 \mathrm{~m}$ the location is to the left of A

Couple

5.1 Couple: consists of two parallel, noncollinear forces that are equal in magnitude and opposite in direction.

- A couple is a purely rotational effect, it has a moment but no resultant force (resultant equias to zero therefore, couple has no tendency to translate the body in any direction).

The magnitude moment of the couple is:
$\mathrm{Mo}=\mathrm{F}(\mathrm{a}+\mathrm{d})-\mathrm{Fa}$
$\mathrm{M}=\mathrm{F} \mathrm{d}$

Where F represent the magnitude of one forces (N) and d is the perpendicular distance or moment arm between the forces (m).
5.2 Equivalent couples: If two couples produce a moment with the same magnitude and direction, then these two couples are equivalent.

Figure below illustrates the four operations that may be performed on a couple without changing its moment; all couples shown in the figure are equivalent. The operations are

1. Changing the magnitude F of each force and the perpendicular distance d while keeping the product $F d$ constant,
2. Rotating the couple in its plane,
3. Moving the couple to a parallel position in its plane
4. Moving the couple to a parallel plane

Examples

Example (22): determine the resultant couple moment of three couples acting on the plate in the figure below:

Solution:

$$
\begin{aligned}
S_{+}+M_{R} & =\Sigma M_{0} \\
M_{R} & =-F_{1} d_{1}+F_{2} d_{2}-F_{3} d_{3} \\
& =(-200)(4)+(450)(3)-(300)(5) \\
& =-950 \mathrm{lb} . \mathrm{ft}=950 \mathrm{lb} . \mathrm{ft}
\end{aligned}
$$

Example (23): determine the magnitude and direction of the couple moment acting on the gear in figure (a):

(a)

Solution:

The easiest solution by the resolving of the forces into its component as shown in figure (b).
$\mathrm{F} 1=\mathrm{F} \cos 30, \quad \mathrm{~d} 1=0.2 \mathrm{~m}$
$\mathrm{F} 2=\mathrm{F} \sin 30, \quad \mathrm{~d} 2=0.2 \mathrm{~m}$

(b)
$\mathrm{M}_{\mathrm{R}}=\sum \mathrm{M}_{\mathrm{O}}$
$\mathrm{M}=(600 \cos 30)^{*} 0.2-(600 \sin 30)^{*} 0.2$
M=43.9 N.m عكس عقارب الساعة

Example (24): Reduce the given loading system to a force-couple system at point A.

Solution:

$\mathrm{F} 1=-200 \mathrm{~N}$,	$\mathrm{d} 1=8 \mathrm{~m}$
$\mathrm{~F} 2=300 \mathrm{~N}$,	$\mathrm{d} 2=18 \mathrm{~m}$
$\mathrm{~F} 3=-180 \mathrm{~N}$,	$\mathrm{d} 3=20+8=28 \mathrm{~m}$
$\mathrm{R}=\sum \mathrm{F}$	
$\mathrm{R}=-200+300-180$	
$\mathrm{R}=-80 \mathrm{~N}$	
$\mathrm{R}=80 \mathrm{~N}$	

$\mathrm{M}_{\mathrm{R}}=\sum \mathrm{M}_{\mathrm{A}}$
$\mathrm{M}_{\mathrm{R}}=\sum \mathrm{F} . \mathrm{d}$
$\mathrm{M}_{\mathrm{R}}=(-200 * 8)+(300 * 18)+(-180 * 28)$
$\mathrm{M}_{\mathrm{R}}=-1240 \mathrm{~N} . \mathrm{m}$
$\mathrm{M}_{\mathrm{R}}=1240 \mathrm{~N} . \mathrm{m}$

Example (25): Replace the $10-\mathrm{kN}$ force acting on the steel column by an equivalent force-couple system at point O . This replacement is frequently done in the design of structures.

Solution:

$$
\mathrm{F}=10 \mathrm{kN}
$$

$$
\mathrm{d}=75 \mathrm{~mm} *(1 \mathrm{~m} / 1000 \mathrm{~mm})
$$

$$
\mathrm{d}=0.075 \mathrm{~m}
$$

$$
\mathrm{R}=-10 \mathrm{kN}
$$

$\mathrm{M}_{\mathrm{o}}=\mathrm{F} \mathrm{d}$
$=10 * 0.075$
$=0.75 \mathrm{kN}$. m
$=0.75 \mathrm{kN} . \mathrm{m}$

SAMPLE PROBLEM 2/1

The forces $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3}, all of which act on point A of the bracket, are specified in three different ways. Determine the x and y scalar components of each of the three forces.

Solution. The scalar components of \mathbf{F}_{1}, from Fig. a, are

$$
\begin{aligned}
& F_{1_{z}}=600 \cos 35^{\circ}=491 \mathrm{~N} \\
& F_{1_{y}}=600 \sin 35^{\circ}=344 \mathrm{~N}
\end{aligned}
$$

Ans.
Ans.
The scalar components of \mathbf{F}_{2}, from Fig. b, are

$$
\begin{aligned}
& F_{2_{x}}=-500\left(\frac{4}{5}\right)=-400 \mathrm{~N} \\
& F_{2_{y}}=500\left(\frac{3}{5}\right)=300 \mathrm{~N}
\end{aligned}
$$

Ans.
Ans.
Note that the angle which orients \mathbf{F}_{2} to the x-axis is never calculated. The cosine and sine of the angle are available by inspection of the 3-4-5 triangle. Also note that the x scalar component of \mathbf{F}_{2} is negative by inspection.

The scalar components of \mathbf{F}_{3} can be obtained by first computing the angle α of Fig. c.

$$
\alpha=\tan ^{-1}\left[\frac{0.2}{0.4}\right]=26.6^{\circ}
$$

(1) Then,

$$
\begin{aligned}
& F_{3_{x}}=F_{3} \sin \alpha=800 \sin 26.6^{\circ}=358 \mathrm{~N} \\
& F_{3_{y}}=-F_{3} \cos \alpha=-800 \cos 26.6^{\circ}=-716 \mathrm{~N}
\end{aligned}
$$

Ans.
Ans.

(b)

Sample Problem 2/2

Combine the two forces \mathbf{P} and \mathbf{T}, which act on the fixed structure at B, into a single equivalent force \mathbf{R}.

Algebraic solution. By using the $x-y$ coordinate system on the given figure, we may write

$$
\begin{aligned}
& R_{x}=\Sigma F_{x}=800-600 \cos 40.9^{\circ}=346 \mathrm{~N} \\
& R_{y}=\Sigma F_{y}=-600 \sin 40.9^{\circ}=-393 \mathrm{~N}
\end{aligned}
$$

The magnitude and dipection of the resultant force \mathbf{R} as shown in Fig. \mathbf{c} are then

$$
\begin{aligned}
& R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{(346)^{2}+(-393)^{2}}=524 \mathrm{~N} \\
& \theta=\tan ^{-1} \frac{\left|R_{y}\right|}{\left|R_{x}\right|}=\tan ^{-1} \frac{393}{346}=48.6^{\circ}
\end{aligned}
$$

Ans.
Ans.

The resultant \mathbf{R} may also be written in vector notation as

$$
\mathbf{R}=R_{x} \mathbf{i}+R_{y} \mathbf{j}=346 \mathbf{i}-393 \mathbf{j} \mathbf{N}
$$

Ans.

General information regarding couple

Moment

$$
\begin{aligned}
& \text { ملاحظةّ مهوة: مككن حساب العزُوم بطريقتّين اما 1) ايجاد نراع (العزُم } \\
& \text { 2) تحثيل القوى كما موضح في المثّال ادنـاه }
\end{aligned}
$$

SAMPLE PROBLEM 2/5

Calculate the magnitude of the moment about the base point O of the $600-\mathrm{N}$ force in five different ways.

Solution. (I) The moment arm to the $600-\mathrm{N}$ force is

$$
d=4 \cos 40^{\circ}+2 \sin 40^{\circ}=4.35 \mathrm{~m}
$$

(1)

By $M=F d$ the moment is clockwise and has the magnitude

$$
M_{O}=600(4.35)=2610 \mathrm{~N} \cdot \mathrm{~m}
$$

(II) Replace the force by its rectangular components at A,

$$
F_{1}=600 \cos 40^{\circ}=460 \mathrm{~N}, \quad F_{2}=600 \sin 40^{\circ}=386 \mathrm{~N}
$$

By Varignon's theorem, the moment becomes

2

$$
M_{O}=460(4)+386(2)=2610 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.

Equilibrium

6.1 Equilibrium: When a system of forces acting on a body has no resultant, the body is in equilibrium.

If system in equilibrium, both of the resultant force and resultant couple are zero.
$\sum \mathrm{Fx}=0$
$\sum \mathrm{Fy}=0$
$\sum \mathrm{Mo}=0$
6.2 Free Body Diagram: (F.B.D): is a sketch of a body or a portion of a body completely issolated (or free) from its surrondings.

In this sketch, it is necessary to show all the forces and moments that the surroundings exert on the body. By using this diagram, the effect of all applied forces and moments acting on the body can be accounted by the equations of equilibrium.

Forces that act on a body can be divided into two general categories:

1) Reactions are the forces which are exerted on a body by the supports to which is attached.
2) Applied forces are the foces that act on a body which are not provided by the supports.

The general procedure for constructing a F.B.D is:

1) A skectch of the body is drawn assuming that all supports (surface of contact, supporting cables, etc.) have been removed.
2) All applied forces are drawn and labeled on the sketch. The weight of the body is considered to be applied force acting at the center of gravity.
3) The support reactions are drawn and labeled on the sketch.
4) All relevant angles and dimensions are shown on the skectch.

| MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS | |
| :--- | :--- | :--- | :--- |
| Type of Contact and Force Origin | Action on Body to Be Isolated |\(\left.| \begin{array}{l}Force exerted by

Weight of cable

negligible

a flexible cable is

always a tension away\end{array}\right)\)
4. Roller support

6. Pin connection	Pin free to turn	A freely hinged pin connection is capable of supporting a force in any direction in the plane normal to the pin axis. We may show two components R_{x} and R_{y} or a magnitude R and direction θ.
7. Built-in or fixed support or		A built-in or fixed support is capable of supporting an axial force F, a transverse force V (shear force), and a couple M (bending moment) to prevent rotation.
8. Gravitational attraction		The resultant of gravitational attraction on all elements of a body of mass m is the weight $W=m g$ and acts toward the center of the earth through the center mass G.

Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the connection types in Table 5-1.

The cable exerts a force on the bracket in the direction of the cable. (1)

The rocker support for this bridge girder allows horizontal movement so the bridge is free to expand and contract due to a change in temperature. (5)

This concrete girder rests on the ledge that is assumed to act as a smooth contacting surface. (6)

(. Plane truss

Examples

Example (26): Draw the free-body diagram of the uniform beam shown below. The beam has a mass of 100 kg .

Solution:

The beam weight $=$ mass* g
The beam weight $=100 * 9.81$
The beam weight $=981 \mathrm{~N}$

Mechanics I - Level 1 - $6^{\text {th }}$ lecture - Dr. Afrah Turki

Example (27): determine the tension in cables AB and BC necessary to support the 60 kg cylinder in figure (a).

Solution

$\mathrm{T}_{\mathrm{BD}}=$ the weight of the cylinder $=$ mass $* \mathrm{~g}$
$\mathrm{T}_{\mathrm{BD}}=60 * 9.81$
$\mathrm{T}_{\mathrm{BD}}=588.6 \mathrm{~N}$
$\tan \theta=34, \quad \theta=36.87^{\circ}$

Equations of equilibrium:

$\sum \mathbf{F x}=\mathbf{0}$
$\mathrm{T}_{\mathrm{BC}} \cos 45-\mathrm{T}_{\mathrm{BA}} \cos 36.87=0$
$0.707 \mathrm{~T}_{\mathrm{BC}}-0.8 \mathrm{~T}_{\mathrm{BA}}=0$
$\mathrm{T}_{\mathrm{BA}}=0.884 \mathrm{~T}_{\mathrm{BC}}$
Equation (1)
$\sum \mathrm{Fy}=\mathbf{0}$
$\mathrm{T}_{\mathrm{BC}} \sin 45+\mathrm{T}_{\mathrm{BA}} \sin 36.87-\mathrm{T}_{\mathrm{BD}}=0$
$0.707 \mathrm{~T}_{\mathrm{BC}}+0.6 \mathrm{~T}_{\mathrm{BA}}-588.6=0$
Equation (2)

Substituting equation (1) into equation (2):
$0.707 \mathrm{~T}_{\mathrm{BC}}+0.6\left(0.884 \mathrm{~T}_{\mathrm{BC}}\right)-588.6=0$
$0.707 \mathrm{~T}_{\mathrm{BC}}+0.53 \mathrm{~T}_{\mathrm{BC}}-588.6=0$
$1.237 \mathrm{~T}_{\mathrm{BC}}-588.6=0$
$1.237 \mathrm{~T}_{\mathrm{BC}}=588.6$
$\mathrm{T}_{\mathrm{BC}}=475.829 \mathrm{~N}$

Substituting ($\mathrm{T}_{\mathrm{BC}}=475.829 \mathrm{~N}$) into equation (1):
$\mathrm{T}_{\mathrm{BA}}=420.63 \mathrm{~N}$

Example (28): The mass center G of the $1400-\mathrm{kg}$ rear-engine car is located as shown in the figure. Determine the normal force under each tire when the car is in equilibrium. State any assumptions.

Solution:

The weight of the car= mass * g
$=1400 * 9.81$
$=13734 \mathrm{~N}$

Equations of equilibrium:

$\sum \mathrm{Fy}=0$
$2 \mathrm{~N}_{\mathrm{f}}+2 \mathrm{~N}_{\mathrm{r}}-13734=0$
$2 \mathrm{~N}_{\mathrm{f}}=13734-2 \mathrm{~N}_{\mathrm{r}}$
$\mathrm{N}_{\mathrm{f}}=6867-\mathrm{N}_{\mathrm{r}}$

Equation (1)

Car weight $=13734 \mathrm{~N}, \quad \mathrm{~d}=1386 \mathrm{~mm} *(1 \mathrm{~m} / 1000 \mathrm{~mm})=1.386 \mathrm{~m}$
N_{r}, $\mathrm{dN}_{\mathrm{r}}=1386+964=2350 \mathrm{~mm} *(1 \mathrm{~m} / 1000 \mathrm{~mm})=2.350 \mathrm{~m}$
$\sum \mathbf{M F}_{\mathrm{F}}=\mathbf{0}$
$(-13734 * 1.386)+\left(2 \mathrm{~N}_{\mathrm{r}} * 2.350\right)=0$
$\mathrm{Nr}=4050 \mathrm{~N}$

Mechanics I - Level 1-6 th lecture - Dr. Afrah Turki

Substituting ($\mathrm{Nr}=4050 \mathrm{~N}$) into equation (1):

$$
N_{f}=6867-4050
$$

$$
\mathrm{N}_{\mathrm{f}}=2816.93 \mathrm{~N}
$$

Example (29): Determine the reaction forces on each cables.

Solution:

$\Sigma \mathrm{Mc}=\mathbf{0}$	$\sum \mathbf{F y}=0$	$\sum \mathrm{Fx}=0$
$\begin{aligned} & -\mathrm{Ay} * 6+2 * 3=0 \\ & 6 \mathrm{Ay}=6 \\ & \mathrm{Ay}=1 \mathrm{kN} \end{aligned}$	$\begin{aligned} & \mathrm{Ay}-\mathrm{Cy}=0 \\ & 1-\mathrm{Cy}=0 \\ & \mathrm{Cy}=1 \mathrm{kN} \end{aligned}$	$\begin{aligned} & C x-2=0 \\ & C x=2 \mathrm{kN} \end{aligned}$

$\tan \alpha=3 / 3, \quad \alpha=45^{0}$

$\sum \mathbf{F x}=\mathbf{0}$	$\sum \mathbf{F y}=\mathbf{0}$
$\mathrm{F}_{\mathrm{AB}}-\mathrm{F}_{\mathrm{AE}} \cos 45=0$	$\mathrm{Ay}-\mathrm{F}_{\mathrm{AE}} \sin 45=0$
$\mathrm{~F}_{\mathrm{AB}}-1.414 * \cos 45=0$	$1-\mathrm{F}_{\mathrm{AE}} \sin 45=0$
$\mathrm{~F}_{\mathrm{AB}}=1 \mathrm{kN}$	$\mathrm{F}_{\mathrm{AE}}=1.414 \mathrm{kN}$

$\sum \mathrm{Fx}=0$	$\sum \mathrm{Fy}=0$
$\begin{aligned} & \mathrm{F}_{\mathrm{AE}} \sin 45-\mathrm{F}_{\mathrm{DE}}=0 \\ & 1.414 * \sin 45-\mathrm{F}_{\mathrm{DE}}=0 \\ & \mathrm{~F}_{\mathrm{DE}}=1 \mathrm{kN} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{AE}} \cos 45-\mathrm{F}_{\mathrm{BE}}=0 \\ & 1.414 * \cos 45-\mathrm{F}_{\mathrm{BE}}=0 \\ & \mathrm{~F}_{\mathrm{BE}}=1 \mathrm{kN} \end{aligned}$

$\sum \mathbf{F x}=\mathbf{0}$	$\sum \mathbf{F y = 0}$
 $\mathrm{F}_{\mathrm{BC}}-2=0$ $\mathrm{~F}_{\mathrm{BC}}=2 \mathrm{kN}$	$\mathrm{F}_{\mathrm{CD}}-1=0$ $\mathrm{~F}_{\mathrm{CD}}=1 \mathrm{kN}$

$\sum \mathbf{F x}=\mathbf{0}$	$\sum \mathbf{F y}=\mathbf{0}$		
$\mathrm{F}_{\mathrm{DE}}-2-\mathrm{F}_{\mathrm{BD}} \cos 45=0$			
$\mathrm{~F}_{\mathrm{DE}}-2-1.414 * \cos 45=0$			
$\mathrm{~F}_{\mathrm{BC}}=3 \mathrm{kN}$		\quad	$\mathrm{F}_{\mathrm{CD}}-\mathrm{F}_{\mathrm{BD}} \sin 45=0$
:---			

Lecture 6:Equilibrium

لغرض تسهيل خطوات الحل في موضوع الاتزان:

* يفضل اخذ العزوم عند النقاط التي يكون فيها اكثر عدد من المجاهيل مثّل عند المسمار (Pin).
* يتم افتر اض اتجاهات ردود الافعال وبحل السؤ ال ان كانت نتيجة القوه رقم سالب يتم عكس الاتجاه المفترض.
* الاجسام المنتظمة (uniform) تكون القوه المعبره عن الوزن فيها في وسط الجسم,اما اذا لم يتم ذكر اي معلومات عن الكتلة او الوزن فيتم اهمال الوزن.

Sample Problem 3/1

Determine the magnitudes of the forces \mathbf{C} and \mathbf{T}, which, along with the other three forces shown, act on the bridge-truss joint.

Solution. The given sketch constitutes the free-body diagram of the isolated
section of the joint in question and shows the five forces which are in equilibrium.

Solution I (scalar algebra). For the $x-y$ axes as shown we have

Simultaneous solution of Eqs. (a) and (b) produces

$$
T=9.09 \mathrm{kN} \quad C=3.03 \mathrm{kN}
$$

Solution II (scalar algebra). To avoid a simultaneous solution, we may use axes$x^{\prime}-y^{\prime}$ with the first summation in the y^{\prime}-direction to eliminate reference to T. Thus,

$$
\begin{aligned}
{\left[\Sigma F_{y^{\prime}}=0\right] \quad } & -C \cos 20^{\circ}-3 \cos 40^{\circ}-8 \sin 40^{\circ}+16 \sin 40^{\circ}=0 \\
& C=3.03 \mathrm{kN}
\end{aligned}
$$

Ans.

$$
\left[\Sigma F_{x^{\prime}}=0\right] \quad T+8 \cos 40^{\circ}-16 \cos 40^{\circ}-3 \sin 40^{\circ}-3.03 \sin 20^{\circ}=0
$$

$$
T=9.09 \mathrm{kN}
$$

Ans.

$$
\begin{aligned}
& {\left[\Sigma F_{x}=0\right] \quad 8+T \cos 40^{\circ}+C \sin 20^{\circ}-16=0} \\
& 0.766 T+0.342 C=8 \\
& {\left[\Sigma F_{y}=0\right]} \\
& T \sin 40^{\circ}-C \cos 20^{\circ}-3=0 \\
& 0.643 T-0.940 \mathrm{C}=3
\end{aligned}
$$

Ans.

(a)

Helpful Hints
(1) Since this is a problem of concurrent forces, no moment equation is necessary.
(2) The selection of reference axes to facilitate computation is always an important consideration. Alternatively in this example we could take a set of axes along and normal to the direction of \mathbf{C} and employ a force summation normal to \mathbf{C} to eliminate it.

Sample Problem 3/2

Calculate the tension T in the cable which supports the $500-\mathrm{kg}$ mass with the pulley arrangement shown. Each pulley is free to rotate about its bearing, and the weights of all parts are small compared with the load. Find the magnitude of the total force on the bearing of pulley C.

Solution. The free-body diagram of each pulley is drawn in its relative position to the others. We begin with pulley A, which includes the only known force. With the unspecified pulley radius designated by r, the equilibrium of moments about its center O and the equilibrium of forces in the vertical direction require

$$
\begin{array}{rrrl}
{\left[\Sigma M_{O}=0\right]} & T_{1} r-T_{2} r=0 & T_{1}=T_{2} & \tag{1}\\
{\left[\Sigma F_{y}=0\right]} & T_{1}+T_{2}-500(9.81)=0 & 2 T_{1}=500(9.81) & T_{1}=T_{2}=2450 \mathrm{~N}
\end{array}
$$

From the example of pulley A we may write the equilibrium of forces on pulley B by inspection as

$$
T_{3}=T_{4}=T_{2} / 2=1226 \mathrm{~N}
$$

For pulley C the angle $\theta=30^{\circ}$ in no way affects the moment of T about the center of the pulley, so that moment equilibrium requires

$$
T=T_{3} \quad \text { or } \quad T=1226 \mathrm{~N}
$$

Ans.
Equilibrium of the pulley in the x - and y-directions requires

$\left[\Sigma F_{x}=0\right]$	$1226 \cos 30^{\circ}-F_{x}=0$	$F_{x}=1062 \mathrm{~N}$
$\left[\Sigma F_{y}=0\right]$	$F_{y}+1226 \sin 30^{\circ}-1226=0$	$F_{y}=613 \mathrm{~N}$
$\left[F=\sqrt{F_{x}{ }^{2}+F_{y}{ }^{2}}\right]$	$F=\sqrt{(1062)^{2}+(613)^{2}}=1226 \mathrm{~N}$	

Ans.

Sample Problem 3/4

Determine the magnitude T of the tension in the supporting cable and the magnitude of the force on the pin at A for the jib crane shown. The beam $A B$ is a standard $0.5-\mathrm{m} \mathrm{I}$-beam with a mass of 95 kg per meter of length.

Algebraic solution. The system is symmetrical about the vertical $x-y$ plane through the center of the beam, so the problem may be analyzed as the equilibrium of a coplanar force system. The free-body diagram of the beam is shown in the figure with the pin reaction at A represented in terms of its two rectangular components. The weight of the beam is $95\left(10^{-3}\right)(5) 9.81=4.66 \mathrm{kN}$ and acts through its center. Note that there are three unknowns A_{x}, A_{y}, and T, which may be found from the three equations of equilibrium. We begin with a moment equation about A, which eliminates two of the three unknowns from the equa-tion. In applying the moment equation about A, it is simpler to consider the moments of the x - and y-components of \mathbf{T} than it is to compute the perpendicular distance from \mathbf{T} to A. Hence, with the counterclockwise sense as positive we write

$$
\left[\Sigma M_{A}=0\right]
$$

$$
\begin{aligned}
\left(T \cos 25^{\circ}\right) 0.25 & +\left(T \sin 25^{\circ}\right)(5-0.12) \\
& -10(5-1.5-0.12)-4.66(2.5-0.12)=0
\end{aligned}
$$

from which

$$
T=19.61 \mathrm{kN}
$$

Ans.
Equating the sums of forces in the x - and y-directions to zero gives

$$
\begin{array}{lcl}
{\left[\Sigma F_{x}=0\right]} & A_{x}-19.61 \cos 25^{\circ}=0 & A_{x}=17.77 \mathrm{kN} \\
{\left[\Sigma F_{y}=0\right]} & A_{y}+19.61 \sin 25^{\circ}-4.66-10=0 & A_{y}=6.37 \mathrm{kN}
\end{array}
$$

(3) $\left[A=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}}\right] \quad A=\sqrt{(17.77)^{2}+(6.37)^{2}}=18.88 \mathrm{kN}$

Ans.

Free-body diagram

Helpful Hints

(1) The justification for this step is Varignon's theorem, explained in Art. $2 / 4$. Be prepared to take full advantage of this principle frequently.
(2) The calculation of moments in twodimensional problems is generally handled more simply by scalar algebra than by the vector cross product $\mathbf{r} \times \mathbf{F}$. In three dimensions, as we will see later the reverse is aften the case

Friction

7.1 Friction: Friction may be defined as the contact resistance exerted by one body upon a second body when the second body move or tends to move past the first body.

From the definition, it should be observed that friction is a retarding force always acting opposite to the motion or the tendency to move.

As we shall see friction exists primarily because of the roughness of contact surface.

7.2 Solving the friction problems:

The solution of friction problem is following this procedure:

1. Draw the F.B.D.

(a)

(b)

F.B.D
(c)

Where:
وزن الجسم W
N = Normal force القوة العمودية
P = Pull force قوة السحب
F = Friction force قوة الاحتكاكو
(القوة (1 (1
2. Apply the equilibrium equations.

Friction Force is directly proportional to the normal force.
وحسب نظرية الاحتكاكك فأن فوة الاحتكاك تتناسب طرديا مع القوة العمودية:

$$
\begin{aligned}
& \mathbf{F} \quad \propto \quad \mathbf{N} \\
& \mathbf{F}=\left({ }^{*}\right)^{*} \mathbf{N} \\
& \mathbf{F}=\mathbf{N} \mathbf{f}^{*} \mathbf{N}
\end{aligned}
$$

f = coefficient of friction معامل الاحتكال
3. Angle of friction (\varnothing)

$$
\begin{aligned}
& \tan \emptyset=\mathrm{F} / \mathrm{N} \\
& \mathrm{~F}=\mu^{*} \mathrm{~N} \\
& \tan \emptyset=\mu * \mathrm{~N} / \mathrm{N}
\end{aligned}
$$

$\tan \emptyset=\mu$

Table 6-1: Typical Values for μ_{5}

Contact materials	Coefficient of static friction $\left(\mu_{s}\right)$
Metal on ice	$0.03-0.05$
Wood on wood	$0.3-0.7$
Leather on wood	$0.2-0.5$
Leather on metal	$0.3-0.6$
Aluminum on aluminum	$1.1-1.7$

Key Concepts:

(a) To determine the value of friction force (F) and the reaction force (N) we can used the equilibrium conditions.

$$
[\Sigma \mathrm{Fx}=0] \quad ;[\Sigma \mathrm{Fy}=0]
$$

(b) $\mathrm{F}<\left(\operatorname{Fmax}=\mu_{\mathrm{s}} \mathrm{N}\right)$: Here the friction force necessary for equilibrium can be supported, and therefore the body is in static equilibrium as assumed. We confirm that the actual friction force F is less than the limiting value Fmax, and that F is determined solely by the equations of equilibrium.
(c) $\mathrm{F}=(\operatorname{Fmax}=\mu \mathrm{s} \mathrm{N})$: Since the friction force F is at its maximum value Fmax, impending motion, the assumption of static equilibrium is valid.
(d) $\mathrm{F}>(\mathrm{Fmax}=\mu \mathrm{s} \mathrm{N})$: Clearly this condition is impossible, because the surfaces cannot support more force than the maximum $\mu s N$. The assumption of equilibrium is therefore invalid, and motion occurs. The friction force F is equal to $\mu k N$.

Examples

Example (30): The 100 N block in the figure below is at rest on a rough horizontal plane before the force P is applied. Determine the magnitude of P that would cause impending sliding to the right.

Solution:

$$
\begin{aligned}
& \sum \mathrm{Fy}=0 \\
& \mathrm{~N}-100=0 \\
& \mathrm{~N}=100 \mathrm{~N} \\
& \mathrm{~F}=\mu \mathrm{N} \\
& =0.5^{*} 100 \\
& \mathrm{~F}=50 \mathrm{~N} \\
& \\
& \sum \mathrm{Fx}=0 \\
& \mathrm{P}-\mathrm{F}=0 \\
& \mathrm{P}-50=0 \\
& \mathrm{P}=50 \mathrm{~N}
\end{aligned}
$$

Example (31): Determine the maximum force P that can be applied to block A in the shown figure without causing either block to move. $\mathrm{W}_{\mathrm{A}}=100 \mathrm{~N}$ and $\mathrm{W}_{\mathrm{B}}=200$ N .

Solution:

: F.B.D. في بداية الحل نرسم ال

(2)
(1)

(3)

From the F.B.D. in figure (1):
Mechanics I - Level 1-7 ${ }^{\text {th }}$ lecture - Dr. Afrah Turki
$\sum \mathrm{Fy}=0$

$$
\begin{aligned}
& \mathrm{N} 2-\mathrm{W}_{\mathrm{A}}-\mathrm{W}_{\mathrm{B}}=0 \\
& \mathrm{~N} 2-100-200=0 \\
& \mathrm{~N} 2=300 \mathrm{~N}
\end{aligned}
$$

From the F.B.D. in figure (2):

$$
\begin{aligned}
& \sum \mathrm{Fy}=0 \\
& \mathrm{~N} 1-\mathrm{W}_{\mathrm{A}}=0 \\
& \mathrm{~N} 1-100=0 \\
& \mathrm{~N} 1=100 \mathrm{~N}
\end{aligned}
$$

From the F.B.D. in Figure (2), we can calculate the friction force (F1) as following:
$\mathrm{F} 1=\left(\mu_{\mathrm{s}}\right)_{1} * \mathrm{~N} 1$
$=0.2 * 100$
$=20 \mathrm{~N}$
$\sum \mathrm{Fx}=0$
P-F1 $=0$
P-20=0
$\mathrm{P}=20 \mathrm{~N}$

From the F.B.D. in Figure (1), we can calculate the friction force (F2) as following:

$$
\begin{aligned}
& \mathrm{F} 2=\left(\mu_{\mathrm{s}}\right)_{2} * \mathrm{~N} 2 \\
& =0.1 * 300 \\
& =30 \mathrm{~N}
\end{aligned}
$$

$\sum \mathrm{Fx}=0$
P-F2 $=0$
$\mathrm{P}-30=0$
$\mathrm{P}=30 \mathrm{~N}$

Therefore, the largest force that can be applied without causing either block to move is,

$$
\mathrm{P}=20 \mathrm{~N}
$$

with sliding impending at surface 1 .
Be sure you understand that the largest force that can be applied is the smaller of the two values determined in the preceding calculations. If sliding impends when $P=20 \mathrm{~N}$, then the system would not be at rest when $\mathrm{P}=30 \mathrm{~N}$

Example (32): If coefficient of friction between all surfaces shown in Figure below is 0.30 . What is the horizontal force required to get 250 kg block moving to the right?

Solution:

نلاحظ ان الجسم ذو ال 80 مقيد و غير متحرك وبالتالي عند تسليط قوة لتحريك الجسم ذو ال 250 kg, فانه لاتوجد قوى عمودية عند سطح التلامس مايين العائق والجسم ذو الكتلة 80 kg. وعلى ضوئة فان قوة الاحتكاك تؤثر فقط على السطح السفلي للجسم ذو الكتّة 80 بينما نوجد قوى احتكاك عند الجسم العلوي والسفلي للجسم ذو الكتلة 250 kg . 20.

In this problem 80 kg block is completely restrained against motion and as we apply force P on 250 Kg block as shown in Fig.3, there is no force acting vertically at the contact surfaces between the obstacle and 80 kg block. Hence frictional force acts only at bottom and top surfaces of 250 kg block while only at lower surface of 80 kg block.

$\begin{array}{ll}\text { (a) Lower block } & \text { (b) Upper block }\end{array}$

Note that $\sum \mathrm{Fy}=0$ for upper block gives $\mathrm{M} 2=\mathrm{W} 2$

Therefore,

$$
\mathrm{M} 2=80 \times 9.81=784.8 \mathrm{~N}
$$

For lower block,

$$
\sum \mathrm{Fy}=0 \text { gives } \mathrm{M} 1=\mathrm{W} 1+\mathrm{M} 2
$$

Therefore,

$$
\mathrm{M} 1=(250 \times 9.81)+784.8=3237.3 \mathrm{~N}
$$

Abstract

Also $(\mathrm{Fr}) 1=\mu \mathrm{M} 1=(0.3)(3237.3)=971.19 \mathrm{~N}$ and $(\mathrm{Fr}) 2=\mu \mathrm{M} 2=(0.3)(784.8)=235.44 \mathrm{~N}$

$\sum \mathrm{Fx}=0$ for lower block gives $\mathrm{P}=(\mathrm{Fr}) 1+(\mathrm{Fr}) 2$
or

$$
\mathrm{P}=1206.63 \mathrm{~N}
$$

Note $-\sum \mathrm{Fx}=0$ is not necessary for upper block in this problem.

SAMPLE PROBLEM 6/l

Determine the maximum angle θ which the adjustable incline may have with the horizontal before the block of mass m begins to slip. The coefficient of static friction between the block and the inclined surface is μ_{5}.

Solution. The free-body diagram of the block shows its weight $W=m g$, the normal force N, and the friction force F exerted by the incline on the block. The friction force acts in the direction to oppose the slipping which would occur if no friction were present.
(1) Equilibrium in the x - and y-directions requires

$$
\begin{array}{lrl}
{\left[\Sigma F_{x}=0\right]} & m g \sin \theta-F=0 & F=m g \sin \theta \\
{\left[\Sigma F_{y}=0\right]} & -m g \cos \theta+N=0 & N=m g \cos \theta
\end{array}
$$

Dividing the first equation by the second gives $F / N=\tan \theta$. Since the maximum angle occurs when $F=F_{\max }=\mu_{s} N$, for impending motion we have

$$
\mu_{s}=\tan \theta_{\max } \quad \text { or } \quad \theta_{\max }=\tan ^{-1} \mu_{s}
$$

Ans.

Helpful Hints

We choose reference axes along and normal to the direction of F to avoid resolving both F and N into components.
(2 This problem describes a very simple way to determine a static coefficient of friction. The maximum value of θ is known as the angle of repose.

