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Subject Target students Hours in a week

First year Theory | Practical | Total
students 3 - 3

MATHEMATICS |

1. General aims:

This course will provide the student with principles of first part of
mathematics (CALCULUS) like matrices, trigonometry, conics,
vectors, limits, derivatives and methods of integration, with their
engineering applications.

2. Special aims: The students can be able to;

A — Provides the student with a comprehensive, thorough, and up-to-
date treatment of engineering mathematics,

B — Solving the mathematical equations to get the unknown variables,
using matrices,

C — Gives an idea about limits and there engineering applications,

D - Provides the student with introduction to matrices and their
calculations with the methods of solving simultaneous equation,

E — Provides the student with introduction to derivatives and methods
of integrations.
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Addition with Infinity
Infinity Plus a Number cwz*k =co (k is any number)

Infinity Plus Infinity €O+ €0 = €0

Infinity Minus Infinity -« — Indeterminate Form

Multiplication with Infinity
Infinity by a Number oo (tk)=%c if k=0

Infinity by Infinity ®@*®©=0
Infinity by Zero 00 — Ind
Division with Infinity and Zero

Zero over a Number —=0

A Number over Zero
A Number over Infinity

Infinity over a Number

o

Z.ero over Infinity
e [¢o)

Infinity over Zero =co

0
0
Zero over Zero % - Ind

. - €0
Infinity over Infinity e Ind

Powers with Infinity and Zero
A Number to the Zero Power k' =1

Zero to the Power Zero 0 > Ind
Infinity to the Power Zero o — Ind
0 if k>0

Z.ero to the Power of a Number o0"-= .
® if k<0

A Number to the Power of Infinity k':[m r‘_i K1
0 si 0=kl

Zero to the Power of Infinity 0% =0

Infinity to the Power of Infinity " =c0

One to the Power of Infinity 1* — Ind
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MATRICES
Rt puges -8

Addition and Scalar Multiplication for Matrices:

A Matrix: Is a rectangular array of numbers or functions which enclosed in brackets.

For example:

] 11 diz di3
2

gy dzz a3 |.

az1 dazz ass |

e 2x? 4
; [ay az aszl,
e 4x %

are matrices. The numbers (or functions) inside the matrix are called entries or, less
commonly, elements of matrix. The first matrix in up has two rows, which are the
horizontal lines of entries. Furthermore, it has three columns, which are the vertical

lines of entries. The second and third matrices are square matrices, which mean that

each has as many rows as columns 3 and 2, respectively. The entries of the second
matrix have two indices, signifying their location within the matrix. The first index is
the number of the row and the second is the number of the column, so that together the
entry’s position is uniquely identified. For example, (read a two three) is in Row 2 and
Column 3, etc.

Matrices having just a single row or column are called vectors. Thus, the fourth

matrix has just one row and is called a row vector. The last matrix has just one column

and is called a column vector.

Now, if we are given a system of linear equations, briefly a linear system, such as:
4I1 + 61'2 + 9_1'3 = 6

6):1 - 2}73 20

5).'1 - 812 + Xg = 10



where Xi, Xo, and xz are unknowns. We form the coefficient matrix, call it A, by listing

the coefficients of the unknowns in the position in which they appear in the linear

: .

[ Note: The symbol used for denoting a matrix such as A is either A or A ]

equations.

xz

AX=D0b

General Notation af a matrix:

ai dayg a1n
dzy [57) Aon
A = [ap] =
_aﬂil 2 e aﬂmq_

Matrix A has m rows and n columns which are called size of the matrix.

Now, for the matrices in Example#1, the ayy  a1p 13
03 1 =5

sizes are 2*3, 3*3, 2*2, 1*3, and 2*1. at agzy az a3
0 -02 16

s as1  d3z a3

e™T  2x2 4

If m=n, we call A as n*n square matrix. YT A Y

: 2

A vector is a matrix with only one row or column. Its entries are called the

components of the vector.

Thus, (general) row vector is of the form
a=|ay as - aul For instance, a=[—-2 5 08 0 1].

A column vector is of the form

by
4
bo
b=| _ | For instance, b = 0 |.
: —7
b



Equality of Matrices

Two matrices A = [aj;;] and B = [bj;] are equal, written A = B, if and only if
they have the same size and the corresponding entries are equal, that is, a;1 = bqq,
ays = byo, and so on. Matrices that are not equal are called different. Thus, matrices
of different sizes are always different.

Example#l:
Let
ayy ayo 4 0
A= and B = .
(2531 aso 3 - ]
Then
an =4 ap= 0
A=B if and only if
asy = 3., ags = -1.

The following matrices are all different. Explain!

e M N B P I

Addition of Matrices

The sum of two matrices A = [a;;.] and B = [b;;] of the same size is written
A + B and has the entries a;j;; + b, obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added.

Example#2:
-4 6 3 5 -1 0 1 5 3
If A= and B = , then A+ B =
0o 1 2 3 1 0 3 2 2

Scalar Multiplication (Multiplication by a Number)

The product of any m X n matrix A = [aj | and any scalar ¢ (number c¢) is written
cA and is the m X n matrix cA = [caj; ] obtained by multiplying each entry of A
by c.




Example#3:

27 -138 =2.7 1.8 3 =2 0 0

10
If A=|0 09|, then —-A=| 0 —0.9,?A= 0 I{, OA=]0 0

90 —45 —-90 4.5 10 =5 0 0

Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the

addition of numbers we obtain similar laws for the addition of matrices of the same size
m X n, namely,

(a) A+B=B+A

® A+B)+C=A+@®B+C) (writtenA + B + C)
(©) A+0=A

@ A+ (—A)=0.

Here 0 denotes the zero matrix (of size m X n), that is, the m X n matrix with all entries
zero. If m = 1 or n = 1, this is a vector, called a zero vector.

Also, (a) c¢(A +B)=cA + B
(b) (c + kA =cA + kA
(c) c(kA) = (ck)A (written ckA)
(d) 1A = Al

Matrix Multiplication:

Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [a;;] times an r X p
matrix B = [bj ] is defined if and only if » = n and is then the m X p matrix
C = [¢ji.) with entries

n j:l,...,m
ik = D, ajbyc = apnbik + ajgbax + -+ + @bk
I=1 k=1,---,p.

The condition » = n means that the second factor, B, must have as many rows as the first
factor has columns, namely n. A diagram of sizes that shows when matrix multiplication
is possible is as follows:

A B = C
[m X n] [n X p] = [m X pl.

9



n=23 P = 2 p= 2
A AL A
s N N ~
@, @ 943 by, by, ‘11 ‘12
4 Ay Ay Gy by by, | = € €y 4
m = m =
a3 @3 G5 by by, €31 €32
Qpp Gyp Q43 Ca1 Ca2
Notations in a product AB = C
Matrix Multiplication
3 5 =1 2 =2 3 1_ 22 -2 43 42
AB = 4 0 2 5 0 7 8= 26 =16 14 6
-6 =3 2 9 =4 1 1 =9 4 =37 =28

Herecyp =3-245-5+(—1)-9 =22, andsoon. Theentryintheboxisceg =4-3+0-7+2-1 =14,
The product BA is not defined. Baac) gaan 8 1 Y1 A shaall J Y Cauall ks
A ghiadl JV) Caall e Joani 13¢5 A0l 48 gaindll

Example#l:
4 2113 4-34+2-5 22 3(14 2

= = whereas 1s undefined.
I 8|15 1-34+8-5 43 5 1 8

Example#2:

So, (a) (kA)B = k(AB) = A(kB) written kKAB or AkB
(b) ABC) = (AB)C written ABC
(c) (A+B)C=AC +BC
d CA+B)=CA+CB

10



Determinant of a Matrix (or the value of a matrix):

Determinants play an important role in finding the inverse of a matrix and also in
solving systems of linear equations. In the following we assume that we have a square
matrix (rows = columns) or (m = n). The determinant of a matrix A will be denoted by
det(A) or |A|. Firstly the determinant of a 2x2 and 3x3 matrix will be introduced, then

the nxn case will be shown.

1) Determinant of 2x2 matrix:

Assuming A is an arbitrary 2x2 matrix A, where the elements are given by:

_Ja b
A= [c d]
then the determinant of a this matrix is as follows:
_ _la b| _ _
det(4) = |4]| = |c d| = ad — bc

3 8

Example#1: Find the determinant of the following matrix; A = [4 6

Solution: det(4) = |2 2 —346-8#+4=18—132=—14

2) Determinant of 3x3 matrix:

=+

- +
ay das ds - - . .
det | by by by |=ajdet | §1 0bs b3 |—asdet | by & b3 |+asdet | by bo  §3
c1 C2 Cc3 1 Co C3 (5] 2 C3 C1 C2 '3

::al(bQC34— 5302) ——ag[blch——bgcl) +’a3(b1CQ ——bgcl)

11



Example#l: Find the determinant of the following matrix; A =

6 1 1
4—25]

2 8 7
6 1 1
Solution: det(A) =4 -2 5|=6%(—2*x7—-5%x8)—1%x(4+x7—-5%2)+1x
2 8 7

(4%x8—2%2)=6x(—54) —1x(18) + 1% (36) = —306

3) Determinant of 4x4 matrix:

The pattern continues for 4x4 matrices:

* plus a times the determinant of the matrix that is not in a's row or column,
« minus b times the determinant of the matrix that is not in b's row or column,
* plus c times the determinant of the matrix that is not in c¢'s row or column,

« minus d times the determinant of the matrix that is not in d's row or column,

ay E‘) ¢ d

f gh e gh+ef hl_|le f g

j k| - e o i j k

nop m op mn p mno

As a formula:

f a A e g h e f h e f g
|Al=a-|j k& 1|-b-|i k ll+c-|i j Ul-d-|2 7 k
n o p m o p m n p m n o

Notice the + - + - pattern (+a... -b... +c... -d...). This is important to remember.

Note: We can extend these rules to get the determinant of any n x n matrix.

12



SOLUTION OF SIMULTANEOUS
EQUATIONS USING CRAMER’S RULE

There are many forms of Cramer’s Rule. One of them is the following:

Cramers rule states that if
anx +apy+ ajizz = b
ar X + any + an»z = b,

aszix + axny + axz = bs

D D, D
thenx:Fx,y: Yandz = —

ap ain a3
where D = a»; dr» dr3
asg aszy dsj

b[ dijp  dj3
bg ar  dxj3
bg, a3y dsjz

D,

1.e. the x-column has been replaced by the R.H.S. b

column,
ajp by oap
Dy = |d72] bg any
az1 bz az;

1.e. the y-column has been replaced by the R.H.S. b
column,

apy ap b
a) apn b
az; axn  b;

D. =

Z

1.e. the z-column has been replaced by the R H.S. b
column.

13



Example#1: Solve the following simultaneous equations using Cramer’s rule;

X+y+z=4
2X — 3y +4z = 33
3X—2y—-2z2=2
PR | | |
Solution: D_l2 3 4
3 -2 =2
=1(6—(—8))—1((—4)—12)
+1((=4)—(—9)=14+164+5=35
4 | 1
D, =133 -3 4
2 =2 =2
= 4(6 — (—8)) — 1((—66) — 8)
+ 1((—66) — (—6))=56+74—60="70
| 4 |
D,=1|2 33 4
3 2 =2
= 1((—=66) — 8) —4((—4)—12) + 1(4 — 99)
=—74+64—-95=—105
| | 4
D.=|2 -3 33
3 =2 2
= 1((—=6) — (—=66)) — 1(4 — 99)
+4((—4) — (=9)) = 60495420 =175
Hence
D, 70 D, —105
= — = = 2’y = — = e
D 35 D 35
. 175
and z=—=—=35
D 35

H.W.: Using Cramer’s rule, calculate the unknown variables (x, y, and z) for
the following system of linear equations:

2x+y+z=3
x—y—z=0
x+2y+z=0

Answer:x=1y=-2,2=3

14



TRIGONOMETRY

Trigonometry: is the branch of mathematics that deals with the measurement of sides

and angles of triangles, and their relationship with each other.

The theorem of Pythagoras: “In any right-angled triangle, the
square of the hypotenuse is equal to the sum of the squares of ¢
the other two sides . 7
i
2=a2+p? 3
Knowing that;
ite si opposite side hypotenuse
sine ) = M, tangent ) = pP—., cosecantt = L,
hypotenuse adjacent side opposite side
. c
le.sing = — ie tanf — — 1.e. cosecld = 5
c a
3 : adjacent side
cosine ) = M, secant = M, cotangentt = J.—,,
hypotenuse adjacent side opposite side
) a C . a
i.e. cos@ = — ie. sech — — Le. cotfd = —
¢ a b
b
sin ¢ N 1
C
= = = — =tand, _
cos# 4 g4 secd = cos B
C
ie. tanf = sin 6 cosecd = —— (Note ‘s” and ‘¢’
- cos 0 sin 6
a go together)
cos) . a 9
sin 0 _E_E_wt ' cotf =
— tan 6
C
) cos @
le. cotf =
sin 6

AlSO, sin8 = cos(90° — 6) and cos @ = sin(90° — 6)

Secants, cosecants and cotangents are called the reciprocal ratios.

15



Example#1: A surveyor at position (S) measured the angle P
of elevation of the top (P) of a perpendicular building,
h
which was 19°. He moved 120 m nearer the building at 47N R
19°
Q|

< »le
< »i%

X 120

L 4

position (R) and found that the angle of elevation is now

47°. Determine the height of the building (h).

. h
Solution:  In triangle  PQS. tan 19° =
x4+ 120
hence h = tan 19°(x 4+ 120),
ie. h=03443(x 4+ 120) (1)

h
In triangle POR, tan47° = —

X
hence h =tan47 (x), i.e. h = 1.0724x (2)
Equating equations (1) and (2) gives:

0.3443(x + 120) = 1.0724x

0.3443x + (0.3443)(120) = 1.0724x
(0.3443)(120) = (1.0724 — 0.3443)x

41.316 = 0.7281x

41.316
X = = 56.74 m
0.7281

From equation (2), height of building, 2 = 1.0724x
= 1.0724(56.74) = 60.85 m

Example#2: The angle of depression of a ship viewed at
a particular instant at position (C) from the top ofa 75 m
vertical cliff (A) is 30°. Find the horizontal distance of
the ship from the base of the cliff (B) at this instant. The

ship is sailing away from the cliff at constant speed and B C  x D
1 minute later its angle of depression (at D) from the top | Angle of Depression (Angles of Elevation): Is
o ) o the angle of elevation of an object as seen by an
of the cliff is 20°. Determine the speed of the ship in km/h.| observer or the angle between the horizontal
and the line from the object to the observer's
. eye (the line of sight).
Solution: tan 30° = AB _ E Sheereerr e .
_— BC BC . H; Horizontall
75 75 NG
hence BC = — Line of sight AN
tan 30° 0.5774 DN
— 1299 m o

= initial position of ship from
base of cliff

16



In triangle ABD,
AB 75 75

tan20° = — = =
BD BC+CD 129.9 +x
Hence
75 75
1299 +x = = = 206.0 m
tan 20° 0.3640
from which,

x=206.0—-129.9 =76.1 m
Thus the ship sails 76.1 m in | minute, i.e. 60 s,
hence,
. distance  76.1
speed of ship = s = 60 m/s
76.1 x 60 x 60
~ 60 x 1000

— 4.57 km/h

km/h

H.W.#1: From a point on horizontal ground a surveyor measures the angle of elevation
of the top of a flagpole as 18° 40’. He moves 50 m nearer to the flagpole and measures

the angle of elevation as 26° 22°. Determine the height of the flagpole. Ans. [53.0 m]

H.W.#2: From a window 4.2 m above horizontal ground the angle of depression of the
foot of a building across the road is 24° and the angle of elevation of the top of the

building is 34°. Determine, and correct to the nearest centimetre, the width of the road

and the height of the building. Ans. [width = 9.43 m, height = 10.56 m]

Periodicity and Graphs of the Trigonometric Functions:

When an angle of measure © and an angle of measure © + 2 are in standard position,
the two angles have the same trigonometric function values: sin(©+2x)=sin0O,
cos(0+2r)=cosO, tan(O+2r)=tanO, and so on. Similarly, sin(©-2n)=sinO, cos(O-
2m)=cosO, tan(O-2r)=tanO, and so on. We describe this repeating behaviour for the six

basic trigonometric functions as “Periodic”

DEFINITION A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period of f.

17



y = tanx

¥ y
¥ = COoSs X v =sinx

[ |

/N /[ |

[ |

I I > X I ; T

-7 0 ¥ pm 2 - 7 2y 3
: 2 2 : 2 % 2 lE

Domain: —oo < x < o
Range: -1=y=1
Period: 2w

(a)

y

J

¥ = SeC X

|t
=
1
3
=t
=

|
T 7 3
D

B

: 3m
Domain: x -r-_'-z, + s
2 2
Range: y=-lory=1

Period: 2w
(d)

Domain: —o¢ << x < @
Range: -1=y=1
Period: 2w

| !
- w0 @ 7 3w 2w
2

e

Domain: x # 0, +, =27, ...
Range: vy=-lorv=1
Period: 2w

(e)

Periods of Trigonometric Functions

Period 77 : tan(x + 7) = tanx
cot(x + 7) = cotx
Period 277: sin(x + 27) = sinx

cos(x + 2m) = cosx
sec(x + 2m) = secx
cscl(x + 27) = cscx

fad
[5
B
=

=
r=t
=

[
E]

. 3w
Domain: x #+ 2+ 27
20 27
Range: - <y<wx

Period: = (©

y=cotx

2t

=1

-+ In
2

_T
2

S8

Domain: x # 0, =7, =27, ...
Range: - <y<x
Period:

(f)

SOME TRIGONOMETRIC IDENTITIES:

sinO + cos’O = 1
tan’O + 1 = sec’O
1 + cot?’O = csc’O
sin(-©) = -sin©
cos(-0) = cosO
tan(-©) = -tan©
sin(O+2m) = sin©
cos(O+2x) = cosO
tan(O+2xw) = tan©O

sin(A+B) = sinA cosB + cosA sinB
sin(A-B) = sinA cosB - cosA sinB

18



cos(A+B) = cosA cosB + sinA sinB
cos(A-B) = cosA cosB — sinA sinB
tan(A+B) = (tanA+tanB)/(1-tanA tanB)
tan(A-B) = (tanA — tanB)/(1+tanA tanB)
sin20O = 2sinO cosO
€0s20 = c0s?0O-sin’O = 2¢0s’0O-1 = 1-2sin’O
sin2 (O /2) = (1-c0sO)/2
cos2 (O /2) = (1+co0sO)/2

Angels:

Angle 6 is measured in degrees or radians.

s=r6 (@ here is in radians)

and

1 radian = —— (= 57.3) degrees or 1 degree = lrg—o(% 0.017) radians.

Positive and neqgative angles: @ ?

ar radians = 180°

<
Unit e

Gl‘“:r.fe of raﬁ"“%

180

Terminal ray

Inilie}] ray
¢ X
<" Positive Initial ray ol / Negative
\ measure / . Terminal measure
’ ray
For example:
¥ y y ¥
ph n
|37 5w
~ 2
— 5, |
2N . ],/'/ \\.\'. . . | \
: ' | /3 ) /)
NPy N4 /37
O - 4 =
4

19




Prove the following trigonometric identities:

. sinxcotx = cosx

|
2. ——— = cosech

V1 —=cos?6
3. 2c0s?A — 1 =cos?A —sin? A
COSX — COS° X )
4. - = SINX COS X
sinx

5. (1 4cotd)? + (1 — cotf)* = 2 cosec*

)
sin” x(secx 4+ cosecx)
6. =1+ tanx
cosxtanx

20



[ Vector Analysis

A scalar is a quantity that is determined by its magnitude. It takes only a numerical
value, i.e., a number. Examples of scalars are time, temperature, length, distance,

speed, density, energy, mass, and voltage.

A vector is a quantity that has both magnitude and direction. We can say that a vector is
an arrow or a directed line segment. For example, a velocity vector has length or
magnitude, which is speed, and direction, which indicates the direction of motion.

Typical examples of vectors are displacement, velocity, and force.

We refer to vectors by either bold letter like (A, AB, or a) or by a line like (A, AB, ora)
L=
or by an arrow like (A, AB, or3).

Equality of Vectors: Two vectors a and b are equal, written a = b, if they have the

same length and the same direction.

i A\ v AN

Equal vectors, Vectors having Vectors having Vectors having
= the same length the same direction different length
(A) but different but different and different
direction length direction
(B) (©) (D)

Figure (A) shows Equal Vectors, and Figures (B-C-D) Show Different Vectors

Components of a Vector: Let the vector PQ shown in figure, :
then a;, a;, and a3 are called “Components of the Vector in \
ag|
Cartesian Coordinates”, and are calculated as: f ?
|
A
|
I - —_— ay o —_— - = PT
a; = X2 — Xy, az = Y2 = )1, az =iz — <1 a, KNI~k _q,
TN
P

Using Pythagorean Theorem, the “Length” of the vector a (PQ) is:

la| = \/a% + a% + a%.

21



Example#1: Calculate the components and length of 3D vector PQ with initial point
P(4,0,2) and terminal (end) point Q(6,-1,2).

Solution: =X —X1=6-4=2, agzyg—ylz-l-O:-l, A3=2,—-72%1=2-2=0

then the length is: la| = V22 ¥ (—1)2 + 0% = V3.

Position Vector: Is the vector with origin (0,0,0). Thus the

components of r will be x,y,z which are the coordinates of the \

terminal point A, as shown in figure.

Vectors Addition

Either Mathematically; the sum of two vectors a = [a;,az,a3] and b = [by,b,,bs] is

obtained by getting a new vector by adding the corresponding components;

a+b=[a1+b1, a2+b2, a3+b3].

OR_Graphically; there are two methods: Tip-to-Tail Method and Parallelogram

Method c
).rH\\
/
f/ \\
/' ®
/ =
2
2l /b
a

Tip-to-Tail Method Parallelogram Method

Mechanics Example:

AN

(Resultant c of two forces a&b)

Resultant

22



Basic Properties of Vector Addition: a+b=b-+a

Let (a, b, u, v, and w are vectors) u+v)+w=u+(v+w)
at0=0+a=a
a+(—a)=0.

Scalar Multiplication (by a number)

The product ca of a vector a = [a;,a,,a3] and a scalar ¢ (real number) is:

ca = [cay, cas, cag]. /
So, we multiply € by each component. / / 1/
a 2a -a -2

Basic Properties of Scalar Multiplication: ca +b) = ca + cb
(c + k)a =ca + ka
c(ka) = (ck)a

la = a.

Example#2: Let two 3D vectors a = [4,0,1] and b = [2,-5,1/3]. Find —a, 7a, a+b, and
2(a-b).

Solution: —a =[—4,0,—1], 7a=1[28,0,7], a+b=1[6,—5%5], and

2(a — b) =2[2,5,2] =[4,10,3] = 2a — 2b.

Unit Vector: A vector a of length 1 is called a unit vector. The standard unit vectors are
i =(1,0,0), j=(0,1,0), and k = (0,0,1).
Any vector a = (a;, a,, az) can be written as a linear combination of the standard unit

vectors as follows:
a= (a]_,az,ag) = (al,0,0) + (0’a210) + (0101a3)
=a;(1,0,0) + a,(0,1,0) + a3(0,0,1)

Therefore,

a = a+ asj + ask.
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Therefore, using |, j, k notations, the two vectors (a & b) in Example#2 will be:

a=4i +k b =2i—5j+ 1k and so on.

HW.: Leta =[3.2,0] =3i+2j; b=[—4,6,0] =4i + 6j
c=1[5—1,81=5i—j+ 8k, d=]0,0,4] = 4k.
(a+b)+ec a+(b+c
b+c¢c, ¢c+b

3c — 6d, 3(c — 2d)
T7(c—Db), 7¢—"T7b
%a — 3c, 9(%:1 — %c)
(7 — 3)a, 7a — 3a
4a + 3b, —4a — 3b
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[I Dot Product (Inner Product) of Two Vectors 1

The dot (inner) product of two vectors a & b is the product of their lengths times cosine

of the angle between them, and it is a scalar quantity. Thus;

a+0,b+0

a*b = |a||b] cos vy if

a*b=0 if a=0orb = 0| ory=90°
Knowing that the “length” of vector a is: |\ Y
yd S N
2 2 = b b b
‘a‘ = \/al + as + as. ash>0 ab=0 ash <0
(orthogonality)

(cosine of y may be +ve, 0, or —ve)

THEOREMI:
Orthogonality Criterion
The inner product of two nonzero vectors is 0 if and only if these vectors are

perpendicular.

Therefore, the angle y between any two nonzero vectors, is:

cos v = a*b a*b
Y allb acaVbeb
la[[bl  Va-aV

Basic Properties of Dot Product:
For vectors a, b, and ¢ and scalars qg;, and q: I R
a*b=>b-a

aa=0

a*a=0 ifandonlyif a =20

Also, If i, j and k are unit vectors in the directions of the x, y and z axes, respectively, then

(because they are perpendicular, y = 90°, cos90°=0)
Y

I.Jj=0 1.k=0 jJ.k=0
I=1 J.J=1 k.k=1 (because they are parallel, y =0, cos0°=1) )

Suppose (a = a;i + aj + azk and b = b;i + byj + bsk) then:

a. b= (aii + aj + asK) . (byi + byj + bgk)
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= ayi . (byi + by + bsk) + ayj . (bii + byj + bsk) + azk - (bii + byj + bsk)
= agi . byl + aji . byj + agi. bsk +ayj . byi + @y . byj + @y . bsk + azk . byi + azk . byj
+ azk . bsk
=ajbgi . i +aiboi . j+aihsi . K+ asbyj. i+ axhy. j+absj. k+asbik.i+asbhk. j
+ azbsk . k

Therefore; the dot product of two vectors (a & b) means:

a*b = albl + a2b2 + a3b3.

Example#1: Find the inner product and the lengths of 3D (R®) vectors a = [1,2,0] and

b =[3,-2,1], then find the angle y between these two vectors.

Solution: ash=1-3+2-(=2)+0-1=—-1,|a| =Vaca=15[bl = Vbeb = VI4, and
asb
|al[b]

Y = arccos = arccos (—0.11952) = 1.69061 = 96.865°.

Example#2: Find the dot (scalar) product of 3D vectors a = 4i+3j+7k and b = 2i+5j+4k

Solution: a . b = (4)*(2) + (3)*(5) + (7)*(4)
=8+ 15 + 28
=21

Example#3: Find the dot (scalar) product of 3D vectors a = -6i+3j-11k and b = 12i+4k

Solution: a . b = (=6)*(12) + (3)*(0) + (~11)*(4)
=72+ 0— 44
=116

Note: Vector a and b are perpendicular to each other if and only if (a . b = 0)
(Theorem1l). And they are parallel if they are “multiples” of each other, like:
a=[2,4],b=[4,8],c=[12],and d = [-2,-4]. (These 2D vectors are all parallel, HOW!!)
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Applications of Dot Product

WORK DONE BY A FORCE:

This is a major application of dot product. Let a constant force )
P acts on a body and makes a movement of the body by d, as /

: d
shown, then the “work W” done is:

W = |plld| cosa = p +d,
Example#4: Find the work done by a force P acting on a body when it is displaced along
a straight segment AB from A to B. Then find the angle y between the force and
the displacement. Knowing that P = [2,5,0], A = (1,3,3), and B = (3,5,5).

Solution: previously, we get the length of any vectoris: 5| = \/42 + a2 + &2
AB=B-A=(355)-(1,3,3) =[2,2,2]
The work done W =P . AB =[2,5,0] . [2,2,2] = (2*2+5*2+0*2) = 14
P.AB 14

1
l — -1 — -1 = -1 = 41.4’0
angley = cos |P||AB| cos V22 ¥ 52 F 02422 + 22 + 22 cos 18.655

Note that the work done is +ve and the angle is < 90°

H. W.: Repeat Example#4 with P = [0,4,3], A= (4,5,-1), and B = (1,3,0).

Answer: Work = -5,y = 105.5°
Note that the work done is -ve and the angle is > 90°

ﬂ Vector Product (Cross Product) of Two Vectors 1

We shall define another form of multiplication of vectors, whose
result will be a vector. We can construct a vector v that is

perpendicular to two vectors a and b, and the length of the

resulting vector represents the area of the parallelogram

containing the vectors a and b. The direction of v is determined
by “Right Hand Rule” as shown. Therefore;
v=axb Vo)
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Another form of cross product is:

axb = n|a||b|siny

Where n is a unit vector normal to both vectorsaand b.  “"

Basic Properties of Cross Product:
1) Ifa=0orb=0,thenv=axb=0

2) If both vectors are nonzero, then v has “length” |v| = |a x b| = |a||b|siny

3) The length of vector |v| represents the area of the parallelogram containing the
multiplied vectors (a & b).

4) If a and b lie in the same straight line, then y is 0° or 180°. Knowing that sin0°=0,
and this givesv=axb =0

i j Kk

ag dg ap ds

by D3

ay dsy

by Dby

v=aXb=|a a az|=

by by D3

jt

and v =[vy,Vo,v3] =vi i+ vy j + vz K

Example#1: Find the vector product v=ax b of a=[1,1,0], and b = [3,0,0].

i j k
o 1 0 1 0 11
solution: y—axb={1 1 o0|= i — i+ k = —3k = [0,0, —3]
o o |3 o [3 0
3.0 0

Knowing that; ixi= kogxk=i kxi=j

jXi=—-k kXj=-i ixXxk=—j
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Example#2: Find the cross (vector) product of vectors v = 2i + j — 2k and w = 3i + k

and show that the resulting vector is perpendicular to both v and w vectors.

Solution: Find v x w using second and third determinant;

gk g o 2 -2 2 1
VW g (1) 12 1|0 1| ]|3 1| |3 0

=i(1(1) = 0(-2)) —j(2(1) = 3(=2)) +k(2(0) - 3(1)) =i— 8j — 3k
To show that this vector is perpendicular to both v and w, compute the dot product of
the following;
v.(vxw)=2i+j—2k).(i—-8—-3k)=2-8+6=0
Similarly; w.(vxw)=@Gi+0j+k).(i-8/—3k)=3+0-3=0

Thus; the vector resulting from v x w is perpendicular to both v and w, because zero dot

product means normality.

General Rules for Vector Product: If a, b, and ¢ are vectors, and | is a scalar:
1) (la) xb =1I(a xb) =ax (Ib)
2) ax(b+c)=(axb)+(axc)
3) (a+b)xc=(axc)+(bxc)
4) bxa=-(axb)
5) ax(bxc)#(@xb)xc
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Applications of Cross Product

AREA OF PARALLELOGRAM:

~—— ||U x @ || = Area of parallelogram ‘
] ] U x 0
Unit normal determined by
| fight-hand rule B
- w >
y 7 Tt

T

Example#1: Find the area of the parallelogram with edges v = 2i + j -3k and w =i + 3j +2k.

Solution: Using cross product;

i j k
viw=1[2 1 -3|=Q+9i—-4+3)j+(6—-1)k=11i—7j+ 5k
1 3 2

The area of parallelogram is; Area = |[vx w| = /112 + (=7)% + 52 =V/195

H.W.: Given the points: P(1,1,1), Q(2,1,3), and R(3,-1,1). Find the area of the

triangle determined by these three points. Ans.: Area = 3
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LavMITS

Example#l: If you are given 24 cm of wire and are asked to form a rectangle whose

area is as large as possible. What dimensions should the rectangle have?

Solution: Let w represent the width of the rectangle and let | represent the length of the

rectangle. Because, 2w + 2|1 =24

Therefore, the areais A=1*w= (12 - w) w = 12w — W
Now, to obtain the maximum area we experiment different

values of w, After trying several values, it appears that the

I=12-w

maximum area occurs when, w = 6, as shown in table,

Width, w 5.5 6.0 6.1

6.5

7.0

35.00 | 35.75 | 35.99 | 36.00 | 35.99

Area, A

35.75

35.00

OR, you can say that “the limit of A as w approaches 6 is 36”.

lim A = l‘in}ﬁ (12w — w?) = 36.

( Definition of Limit

lim f(x) = L.

If f(x) becomes arbitrarily close to a unique number L as x approaches ¢ from
either side, then the limit of f(x) as x approaches ¢ is L. This is written as

\
R _ x
Example#2: Given f (x) = —=—,

find the value of f(x) at x = 0 using limit table.

Solution: substituting directly the value of x = 0 in the equation gives 0/0, which is

numerically undefined, but drawing the function shows a value at x =0 !!

So, we can construct a table that shows values of f(x) for two

of x-values, one approaches 0 from left and one from right.

sets

—0.01 —0.001 | —0.0001 | O | 0.0001 0.001 0.01

1.99499 | 1.99949 | 1.99995 | 7 | 2.00005 | 2.00050 | 2.00499

)

It appears that the limit is 2, which is also shown in figure.

Note that the function is not exist at x = 0, but the limit exist.
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x—0

5.1 \f(.\') =

v

X

Vrx+1-1
1/
/

. fis undefined
atx=0.

——f—f—x
12 3 4




Therefore; Existence of a Limit
If fis a function and ¢ and L are real numbers, then
lim /(x) = L

if and only if both the left and right limits exist and are equal to L.

Ixl
X

Example#3: Show that the limit is not exist for; lim,,_,

Solution:

Consider the graph of the function given
by f(x) = |x|/x. In Figure , you can
see that for positive x-values

M pu

X

I, x>0

and for negative x-values

b _

X

-1, x<O.

This means that no matter how close x
gets to O, there will be both positive and
negative x-values that yield

flx) =1

and

flx) = —1.
This means that the limit is not exist.

The existence or nonexistence of f(x) at x=c has no effect on
the existence of the limit of f(x) as x approaches c

Conditions Under Which Limits Do Not Exist

The limit of f(x) as x — ¢ does not exist under any of the following conditions.

1. f(x) approaches a different number from the right side of c¢ than it approaches from
the left side of c.
2. f(x) increases or decreases without bound as x approaches c.

3. f(x) oscillates between two fixed values as x approaches c.
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Finding Limit using Direct Substitution

Direct substitution means: |};;, () = £(0). Substitute ¢ for x.

X—C

Direct substitution is used to find the limit in the following examples:

a. lim x> = (4)> = 16

x—4

b. lim 5x = 51lim x = 5(4) = 20

x—4 x—4

tanx ll_rf,}r tan x 0

¢. lim : =—=0
x—>7 X lim x T
X—TT
d. lim /x= /9=3
x—9
e. lim (x cosx) = (lim x)(lim cos x)
= 7r(cos )
= —
. lim (x + 4)° = {(mq x) + (lim 4)]
= (3 +4)
=72 =49

9 lm (@ +x—06)=(-1+(=1)—-6=-6

o x2+x—6 (—1)P+(—1)—6 6
h. lim = = ——=-3
—=—1 x4+ 3 —1+3 2

Example#L: Find the limit; lim,_,_; *+%=6

x+3

Solution: If we substitute directly we get 0/0, therefore, algebraic treatment is needed:

. X2+ x—6 o k=2 x + 3)
lim ——— = lim
—-3 x4+ 3 x——3 x+3
~ (x — 2)(x+73)
= lim
x——3 x+3
= lim (x — 2)
x——3
=—-3-2
= =5
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Example#2: Find the limit; lim,_,; —*

x3-x24+x-1
Solution: iy X1 — lim x -1
=l — 2+ x— 1 =l — D2+ 1)
. x—1
= lim .
I e + 1)
|
= lim
=1 x2 4+ 1
1
12+ 1
_1
2

ExampleZ3: Find the limit of f(x) as x approaches 1.
X, x <1

f={ "

xc, x>1

Solution: 1ir1}_ flx) = lirrll_(4 — X)

=4
= 3.
and, lim, flx) = lim, (4x — x?)
= 4(1) — 12
= 3.

Therefore, the limit is exist, and hml flx) = 3.
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DIFFERENTIATION

The derivative of a function at a point represents slope of the tangent for that curve at

that point.

DEFINITIONS The slope of the curve y = f(x) at the point P(xg, f(xo)) is the
number

flxo + h) — f(xo)

m = }}imo h (provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

Example#l: a) Find the slope of the curve y = 1/x at any point x = a # 0. What is the
slope at the point x = -1?

b) Where does the slope equal -1/4?

Solution: (a) Here f(x) = 1/x.The slope at (a, 1/a) is

1 1
lim 7O = S@ etk @ 1a—(ath)
h—0 h h—0 h —0 h ala + h)
= lim —— = fim ——L =1
h—0 hala + h)  »—0 ala + h) a?
When a = -1, the slope is -1/(-1)* = -1 ;

1 1 ) .. .
(b) 2 = — 4 This equation is equivalent to a’=4,s0a=2

1
slope is —
Pels Ty

or a = -2. The curve has slope -1/4 at the two
points (2, 1/2) and (-2, -1/2).

Now;

DEFINITION  The derivative of the function f(x) with respect to the variable x is
the function f" whose value at x is

flx +h) = f(x)

f'(x) = ;}@0 )

provided the limit exists.

35



Example#2: Using definition of derivative, differentiate f(x) = —

Solution: flx) = %1 and  f(x + h) =

X

_ﬂﬂ—ﬁmﬂx+2_fm

h—0

x+h _ x
x+h—1 x-—1
h—0 h

(x + h) ‘
(x+h)—l’w

.(x+h)(x—l)—x(x+k—l)

x+h—Dx—1

TG F A= DG =1 (=D

X
x—1

Definition

a c ad — ch

b d bd

Simplify

Cancel h # 0

Derivative of a Constant Function
If f has the constant value f(x) = ¢, then

af _d , , _
E—E(C)—O.

Power Rule (General Version)

If n 1s any real number, then
d n -1

n
- X = X
dx ’

for all x where the powers x"and x" ™" are defined.

Example#3: Differentiate the following powers of x;
@x* MxB @7 (@5

(e) x—4/3

c (x, ) (x+ h,¢)

R —

+rFr-————

(f) 1/x2+7t

Solution: (a) %(ﬁ) =3 =32 (b) %(xz/s) — %x(m)—] _ %x—m

© L(xV2) = VvV @ d‘i(l)

dx x4
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~4/3) = _%x—(4/3)—1 _ _%X—T/S

© Li

d 217 _ 4 (142 _ T\ 1+@2)—-1 _ 1 p
(f) E(\/Jﬁ)—E(x+(/3)—(1+§)x+”) = 22+ MV

Derivative Constant Multiple Rule
If u is a differentiable function of x, and ¢ is a constant, then

i(cu) = cd—u
dx dx’

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable
at every point where u and v are both differentiable. At such points,
du | du

d _du  dv
dx(u+v)—dx+dx.

Example#4: Find the derivative of the polynomial y = x3 + gxz —5x+1

ion- @ d d (4 d d
SO|U'[IOI’]. E=5x3+a(§x2)_a(5x)+a(l)

=3x2+%-2x—5+0=3x2+§x—5

Derivative Product Rule
If u and v are differentiable at x, then so is their product uv, and

(uv) = 20 du

d du
dx dx’

dx

Example#5: Find the derivative of y = (x2 + 1)(x3 + 3)

Solution: We can solve this example by two methods (a or b);

@ L2+ D6 +3)] = @2+ DG + @430 L=

d dx

= 3x% + 3x% + 2 + 6x
= 5x% + 3x% + 6x.

b)) y=x*+DE*+3)=x>+x>+3x2+3

dy

= 5x% + 3x% + 6x.
dx
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Derivative Quotient Rule

If u and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and

du dv
v — u

t2—-1
t3+1

Example#6: Find the derivative of y =

Solution: 4 (£ +1)-2t — (2 — 1)+ 3¢
dt (3 + 1)
214 4+ 2t — 314 + 342
(3 + 1)
—t* 4+ 312 + 2t
(13 + 1)

The second derivative is:

" dzy d dy dyf " 20 ¢ 2
f (JC) — dxz - dx (dx) - dx =y = D (f)(.?C) _ Dx f(JC)
th i i is: |, — d (n—1) — ﬁ Y
OR generally, the n™ derivative is: 2V gon = D"y

Example#7: Find all the derivatives of: y = x3 — 3x% + 2

y' = 3x% — 6x
y''=6x — 6
Third derivative: y" =6
y(4) = 0.

Solution:  First derivative:

Second derivative:

Fourth derivative:

Note: When we asked to find all the derivatives of a function, we stop when get 0.
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Derivatives of Trigonometric Functions:

i(sinx) = COS X i(cosx) = —sinx

dx ' dx '

d — cop? d C el
dx(tanx) sec” x dx(COtx) csc” X
i(secx) = secxtanx i(cscx) = —cscxcotx
dx dx

The ChainRule: 1 (£« g)'(x) = f'(g(x)-g'(x)
if y = f(u) and u = g(x), then

Y _ D du
dx du dx’

Example#1: Find the derivative of g(t) = tan(5-sin2t)

Solution: ¢'(r) = %(m (5 — sin 26))
= sec?(5 — sin 2t)-di(5 — sin 2¢)
t
— capl . d
= sec” (5 — sin2¢) -+ (O — cos 21,‘-%(21‘))

= sec’(5 — sin2¢) + (—cos 2¢) - 2
= —2(cos 2¢) sec’ (5 — sin 2¢).

Example#2: Find the derivative of the following functions:

1 .
(a) (5x3 —x*)7 (b) — (c) sin®x
3x-2
SOlUtiOﬂ: i 3 T — 3_ .4 6£ 3 _ .4 Power Chain Rule with
- (3) dx (Sx . ) 7(5)6 * ) dx (Sx * ) i 563 — x4 n 7
= 7(5x° — xM%(5+3x% — 4x?%)
= 7(5x3 — xM%(15x% — 4x?)
d (1 )\ _do. _ 5
b) 7 (3x — 2) = X2
- — —2£ — Power Chain Rule with
1(3)6 2) dx (3x 2) u=3x—2,n=—1
= —1(3x — 2)74(3)
___ 3
(3x — 2)?

( d , . 5 — 5 4 d . Power Chain Rule with # = sinx, n = 5,
C) dx (Sm x) - OSmX dx SHLx because sin” x means (sinx)”, n # —1.,

= Ssin*xcosx
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Example3# An object moves along the x-axis so that its position x at any time t is
given by : x(t) = cos(t? + 1). Find the velocity of the object as a function of t.

Solution: We know that the velocity is dx/dt, x = cos(u) and u = t*+1. We have:

j_ff = —Si]’] (u) x = coslu)
% = 2tf. u=1t*+1
By the Chain Rule; dx _ dx du
dt  du dt
= —sin(u) * 2t ax evaluated at u

du

= —sin(t? + 1)-2t
= —2¢sin(t? + 1).

Hyperbolic Functions: Are functions formed by taking combinations of the two

exponential functions (e * and e ™). The following are the basic six hyperbolic functions;

(a)
Hyperbolic sine:
et — e

sinhx = 3

(d)
Hyperbolic secant:

1 2

sechx = = =
cosh x et + e *

Yy = coshx Y
I'. v = coth x
& 3r IlI e~ 2
YEIN ST el
\ h il / y = tanh x
(IR s e T ER — L1 5y
321 | 123 27 12
ol YT -1
y = cothx
(b) (c)
Hyperbolic cosine: Hyperbolic tangent:
et + e™* sinh x e —e™
== = tanh x = = —
cosh x 2 coshx e*+ ™

Hyperbolic cotangent:

_coshx e*+e*
s sinhx e —e™

(e)
Hyperbolic cosecant:

cschx = 1 = 2
’ sinh x et — ™
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Also, we have; | cosh x — sinh?x = 1
sinh 2x = 2 sinh x coshx
cosh 2x = cosh?x + sinh®x

cosh?x = cosh22x + 1
..o _ cosh2x — 1
sinh” x S E—

tanh®x = 1 = sech®x
coth?x = 1 + csch?x

Derivatives of Hyperbolic Functions:

d . — ek g, AU d a2, AU
i (sinhu) = wbhudx / (cothu) = —csch”u I
d (oshu) — sinhu % d o — —sech u tanh 1 2
/ (coshu) bmhudx / (sechu) = —sechu tanh u I
4, — soch?y M A iohr) = —es du
/ (tanhu) = sech” u i / (cschu) = —cschu cothu /

L’Hopital’s Rule: Is a method of differentiation to solve indeterminate

limits. Indeterminant limits are limits of functions where both the

numerator and the denominator are approaching 0 or positive or negative

infinity. f( _ lim f'(x)
\ﬂ\,, g(x) XX, g( )

provided the limit exists

2_
Example#1: Evaluate the following limit: limx_,3’;Tg9

Solution: The limits is indeterminate (0/0) when putting x =3 !

The first method: factoring out (x-3) from the numerator, we get:

x2-9  (x=-3)(x+3)
lim = =limx+3=6
x>3x—3 x-3 (x—23) x—3

The second method: we can differentiate both the numerator and denominator according

to L Hopitals rule:

l'xz_9 lim Z¥ = lim(2+3) = 6
xl—rgx—3 _xl—rgT_ lm( * )_

Note: We can differentiate more than one time

H.W. Using L’Hopital’s rule, find lim,_ 6: 5_42x answer=6/-5
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INVERSE FUNCTIONS

A function that undoes, or inverts, the effect of a function f is called the inverse of f.

fUb) = a if fla) = b

Example#l: A camera is to take a series of photographs of a hot air balloon rising
vertically. The distance between the camera at (B) and the launching point of the
balloon (A) is 300 meters. The camera must keep the balloon on sight and therefore its
angle of elevation t must change with the height x of the balloon.

a) Find angle t as a function of the height x.

b) Find angle t in degrees when x is equal to 150, 300 and
600 meters. (approximate your answer to 1 decimal place).
c¢) Graph t as a function of x.

Solution: tan(t) = x /300

taking (tan™) for the two sides;

; cuf A

tan™(tan(t)) = tan™( x / 300 )

therefore, answer of branch (a) is t =tan™(x / 300)

(b) The values of t at 150, 300 and 600 are found using a calculator;
t(150) = 26.5 degrees (approximated to 1 decimal place)
t(300) = 45.0 degrees
t(600) = 63.4 degrees (approximated to 1 decimal place)

(c) We use the values of t in part (b) and extra points and graph t as a function of x

OR, doing a table;

X
0
150
300
600
1200
3000

t
0

26.5
45.0
63.4
76.0

84.3

42

degrees

78

5

68

45

38

388 608 88 1288
* in meters



Derivative of Inverse Trigonometric Functions:

d(sin”'u) 1 du -
dx - V1 = 2 dx’ |u]
d(cos™
p, MeosTu) 1wy
dx 4 /1 _ uﬁ dx
3 ditan”'u) du
' dx ]+ P dx
s dicot™u) 1 du
) S
d(sec™ u) 1 du
YT geoia MY
d(csc™ u) 1 du
6. I __|u| a1 IE’ |u| > 1

Example#2: Find the equation of the normal to the curve of y = tan_l(g) atx =3

d(tan" u) 1 du

Solution: Benefit from: _ au
1 + u?dx

dy 1 l
therefore, = - (5)2 (2)
2

when x = 3, this expression is equal to: 0.153846, so the slope of the tangent at x = 3 is

0.153846. The slope of the normal at x = 3 is given by:

-1
0.153846

y —0.9828 = —6.5(x —3),0R y = —6.5x + 20.483

= —6.5, so the equation of the normal is (when x = 3, y = 0.9828) given by:
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NATURAL LOGARITHMS

In a simple form, a logarithm answers the question:

“How many of one number do we multiply to get another number?”

1.e., Ex: How many 2’s do we multiply to get 16?
Answer: 2*2*2*2 = 16. So we need to multiply 4 of the 2’s to get 16
Now, we can say “the logarithm of 16 with base 2 is 4”, and it is written as:
log, (16) =4
By the same thing, “the logarithm of 10000 with base 10 is 4 because; 10*10*10*10
= 10000, and written as: logio (10000) =4

where as in natural logarithm (i.e., with base e “Euler’s Number”) gives the idea about

how many times we need to multiply e to get the number. e = 2.718

loge (x) = 1In (x)

DEFINITION  The natural logarithm is the function given by

lnx=/%dt, x> 0.
J1

If x > 1, then In x is the area under the curve y =1/t y

fromt=1tot=x For 0 <x <1, In x gives the y=Inx

negative of the area under the curve from x to 1.. The /
X

function is not defined for x < 0, also: 0 (1,0)
II 1
Inl = / ?dt =0
J1

DEFINITION  The number e is that number in the domain of the natural loga-
rithm satisfying

In(e) = 1.

ivati ig: d _d [T1, 1
The derivative of Inx is: Elm_ [:d‘_x

OR generally; diln y— 1d 0> 0.
X

au
u dx’
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Example#l: Find the derivative of (a) In 2x and (b) In u, where u = (x* + 3).

Solution: (a) %h}h - zl—xd%(zx) - 2]7(2) =5 x>0

L_.d (2431

b) Lin(? +3) = “2x = :
(b) e R x4+ 3 X+ 3

Properties of the Natural Logarithm; For any numbers b > 0 and x > 0;

1. Product Rule: Inbx = Inb + Inx

b _
2. Quotient Rule: In3-=1Inb — Inx
3. Reciprocal Rule: ln% = —Inx

4. Power Rule: Inx" = rinx

The following examples show the application of these properties;

(a) In4 + Insinx = In (4 sinx) Product

b 2Tl — G+ ) —In@c—3)  Quoten

(c) ln% = —In38 Reciprocal
= —In2* = =3 1In2 Power

Also, Ifuis a differentiable function that is never zero,

1 .
/udu—ln |u| + C.

EXPONENTIAL FUNCTIONS

“Exponential function e* is the inverse of In x.”

“e (Euler’s Number) is the x-value that gives y = 1 for the functiony = In x.”

Inverse Equations for ¢* and In x
e =x  (allx > 0)
In(e*) = x (all x)
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Example#L: Solve the equation e ° = 4 for x.

Solution: Taking the natural logarithm of both sides of the equation:

In(e* % = In4

2x — 6 = In4
2x =6 + In4
x:3+%1n4:3+]n41/2
x=3+1In2
Properties of In: In(e*) = x
d X _
dxln(e)—l
1 d, . _
ex dx(e)il

i e e
dx .

If u 1s any differentiable function of x, then

d ., _ udu
dxe - ¢ dx’

The following examples show the application of In properties;

d d
(a) E(Se"‘) = SEex = Se*

(b) d_dxe_x = e_x%(—x) — e_—’c(_l) = —g™*

sin x

(c) iesmx = esmi(sinx) = %M. cosx

dx dx
(d) i(ev.%xﬂ) — ev3x+l ‘i.(*\ x’3x + 1)
dx dx
ERVCTTI § /2.1 — 3 V3x+l
= e =(3x + 1)7/-3 = e
2 2V3x + 1
AISO, The general antiderivative of the exponential function

/e”du—e”+C
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THEOREM ~ For all numbers x, x|, and x;, the natural exponential e”* obeys
the following laws:

1. ¢¥l-e%2 = g0t® 2, e = 1

X1
3. 5 = en™ 4. (e™) = e™™, ifris rational
e

DEFINITION  For any x > 0 and for any real number n,

X" = enlnx.

General Power Rule for Derivatives
For x > 0 and any real number #,

d n n—1
X = nx .
dx

If x = 0, then the formula holds whenever the derivative, x”, and x"~" all exist.

Example#2: Find equation of the slope (dy/dx) for the function:
y = 3x%1 — 4sin(2x) + 2e>* + é
Solution:
dy =3 2.1 % x?17  dx — 4 cos(2x) * 2dx + 2 * e>* * 5dx + 2 * (=2)(x 2" Ddx
4

The equation of slope %2 = 6.3x! — 8 cos(2x) + 10e5% — =

dx x3

CONIC SECTIONS

A conic section is a curve obtained from the intersection of a right circular cone and a

plane. There are four conic sections: parabola, circle, ellipse, and hyperbola.

The goal is to sketch these graphs
on a rectangular coordinate plane

(x and y), as shown below;

parabola
ellipse

cincle hyperbola =

Parabola Circle Ellipse Hyperbola

I
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First we began with the Distance Formula: Given two points ( X;, y; ) and (X2, Yy ) in

a rectangular coordinate plane, the distance d between them is given by the distance

formula;

d= \/(xg—x1)2+ (}’2—)’1)2

And the midpoint that divides this distance d into two equal parts has the coordinates;

X1+ x; yi+y2
2 ’ 2

Example#l: Given (—2, —5) and (—4, —3) calculate the distance and midpoint between

these two points.

Solution: d= \/(,\'2 = | )2 + (_\'2 =M )2

And the midpoint has the coordinates;

X1 + x> Y+ . 24+ (-4) -5+ (-3)
—, —— )= — ; |

ye e

Example#2: The diameter of a circle is defined by the two points (-1, 2) and (1, —2).

Determine the radius of the circle and use it to calculate its area.

Solution: Find the diameter using the distance formula;
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INTEGRATION

OR: Anti-derivative

T

Definite Integration

4

The function is the integrand.

Upper limit of integration
b’ /
. is the variable of integration.
Integral sign \ X >
f(x) dx

a
/_V—J

Integral of f from a to b

‘When you find the value
of the integral, you have
evaluated the integral.

Lower limit of integration

Definite integral gives a value

Indefinite Integration

4
/f(x)dx = F(x) + C

where Cis constant

Indefinite integral gives an equation

Rules of Definite Integration: (Also applied to indefinite integration)

a b
1. Order of Integration: f f(x)dx = *[ Ff(x) dx
b a
a
2. Zero Width Interval: f f(x)dx =0

b b
3. Constant Multiple: f kf(x)dx = k| f(x)dx

b b b
4. Sum and Difference: f (f(x) £ g(x))dx = / f(x) dx £ / g(x) dx

5. Additivity:

b c c
ff'(X)dx+£f'(X)dr=/f(X)dx

INTEGRATION TECHNIQUES

1) Substitution Method

THEOREM —The Substitution Rule

If u = g(x) is a differentiable function

whose range 1s an interval /, and f is continuous on /, then

ff(g(x))g’(x)dx = /f(u) du.

The Integrals of tan x, cot x, sec x, and csc x

/tanxdx - / sinx g _ / —du

= —In|u| + C = —In|cosx| + C
= In—2 + C = In|secx| + C.
| cos x|
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For the cotangent,

cOS x dx du u = sinx,
cotx dx = — = - o
Sin x U du = cosxdx

=In|u| + C=In|sinx] + C = —In|cscx| + C.

To integrate sec x, we multiply and divide by (sec x + tan x).

(secx + tanx) sec’ x + sec x tan x
secxdx = [ secx ———dx = dx
(secx + tanx) secx + tanx

du

=Infu + € = In|secx + tanx| + C T seer

.
du = (secxtan x + sec” x) dx

For csc x, we multiply and divide by (csc x + cot x).

cscx + cotx 2y 4 i
fcscxdx ]cscx( )dx_fcsc x + ¢cscxco xdx

(cscx + cotx) cscx + cotx

u cscx + cotx

= ]—;iu = —In |u| + C=—In |cscx + cotx| + C

du = (—csex cotx — csc? x) dx
SUMMARY
Integrals of the tangent, cotangent, secant, and cosecant functions
/tanudu=1n|secu| + C fsecudu=1n|secu+tanu| +C
/cotuduln|sinu| +C jcscudu—ln|cscu+cotu| +C

Example#1: Find the value of the following definite integrals:

(a) fon cos x dx (b) f_On/4secxtanx dx (c) ff G\/}—xi) dx

ar aw
Solution: (a) / cosx dx = sinx} because %5111,\' = cosx
Jo 0 :
=sinm —sin0=0—0=20
0 0 ,
(b) secxtanx dx = secx} because [;Tscc X = secxtanx
—/4 —m/4 -

secO—sec(—Z)l—\/E

(c) x _ dx: x3/2+i ) b i(‘{ﬁ'l*i) 7§Yl;'l_i
x| ecause - |: x) =3 .

4 4
= [(4)-*/2 + Z] - {(1)-‘/2 + T}
=[8+ 1] —[5] = 4.

s d(x™) = na™ 1, integrate both sides: [d(x™) =n [x"1,0R: x" =n [x"!
n+1
Therefore; [ 2" 1 = X OR: [ = ?,like: [x? =
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Example#2: Find the integral [(x3 + x)° (3x? + 1)dx

Solution: Wesetu = x° + x. Then

_du o2
du = dxdx—(3x + 1) dx,

so that by substitution we have

f(x3 + x)5(3x2 + 1)dx = /us du Letu = x° + x,du = (3x°
u6
=6 + C Integrate with respect to u.
B (x* + x)°

6 + C Substitute x* + x for u.

b 1) dx

Example#3: Benefit from the In definition, find; foz xifs dx

Solution: Let u = x* — 5, gives du = 2x dx
so, u(0) =-5,and u(2) =-1

2 -1 -1
2x du
dx = ~— =1In|u
A x? =5 .[5 U | l]—s

= 1n|—1|—1n|—5| =Inl—=1In5

=-In5

Example#4: Find (a) f;nze”dx, and (b) fon/zesmxcosx dx

1 .

. *In2 *In 8 =3x, —du=dx, u(0)=0,
SO|U'[IOI’]Z @ o3 g — eu.ldu u X, Fdu=dx 1”[ )

0 0 3 u(ln2) =3In2=Im2" =8

In8
_1 u
_SA e" du

/2

0

w2 )
(b) [ e cosxdx = esm"l
0

=el —eP=¢—1
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2) Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

/ J(x)glx) dx.

Integration by Parts Formula

/udvzuu—/vdu

Note that we try to choose u the function which may be disappeared by differentiation.

Example#l: Find [ x cosx dx using integration by parts

Solution:  We use the formula/ udv = uv — / v du with

u=x, dv = cos x dx,

du = dx, v

sin x, Simplest antiderivative of cos x

/xcosxdx = xsinx —fsinxdx = xsinx + cosx + C

Example#2: Find [ Inx dx

Solution: Since [ Inx dx can be written as [ Inx. 1 dx, we use the formula of by part;

fudv=uv— [vdu with; u=Inx, du=dx/x, dv=1dx, v=x

]lnxdx—xlnx—fx-%dx—xlnx—/dx—xlnx—x+C.

Example#3: Evaluate [ x? e* dx
Solution: withu = x2, dv = e*dx,du = 2xdx,and v = e”, we have

/xzexdx = x2e* — /xexdx.

The new integral is less complicated than the original because the exponent on x is re-
duced by one. To evaluate the integral on the right, we integrate by parts again with
u = x,dv = e*dx. Thendu = dx,v = e*, and

/xexdx=xe'”—/e“‘dx=xe"—e"+ C.
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Using this last evaluation, we then obtain

/xzexdx = x%* — 2/ xe* dx

= x2e* = 2xe* + 2¢* + C.

H.W.: Determine the following integral: J = [ e* sinx dx

3) Trigonometric Integrals

We begin with integrals of the form: [sin™x cos"xdx, where m and n are
nonnegative integers (+ve or 0). We can divide the appropriate substitution into three

cases according to m and n being odd or even;

Case 1 Ifmis odd, we write m as 2k + 1 and use the identity sin”x = 1 — cos®x

to obtain

sin” x = sin***1x = (sin?x)*sinx = (1 — cos®x)fsinx. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to
—d(cos x).
Case 2 If m is even and # is odd in [ sin™x cos” x dx, we write n as 2k + 1

and use the identity cos’x = 1 — sin’x to obtain

2k+1

cos"x = cos™ ' x = (cos’x)¥cosx = (1 — sin’x)*cosx.

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 If both m and n are even in f sin™ x cos” x dx, we substitute

sin’x = %, cos?x = % 2)

to reduce the integrand to one in lower powers of cos 2x.

Example#: Find [ sin®x cos?x dx (example on Case 1, where m is odd)
Solution: / sin® x cos®> x dx = / sin® x cos® x sinx dx m is odd.

= / (1 — cos’x) cos® x (—=d (cosx)) sinx dx = —d(cos x)

= / (1 - 142)(u2)(—du) U = COSX

= f (u4 - uz) du Multiply terms.
5 3 5 3

_uw _cos’x _ cos'x
5 3 +C 3 3 + C.
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Example#2: Evaluate [ cosx dx

Solution: This is an example of Case 2, where m =0 is evenand n =5 is odd.

/cossxdx = /cos4xcosxdx = /(1 — sin®x)? d(sin x)

cos x dx = d(sin x)

U sin x

= /(1 — 21{2 + u4) du Square 1 — u,
_ 23,15 e =23 1 s
—u—3u —|-5u + C = sinx 351nx+551nx+C.
Example#3: Evaluate [ sin®x cos*x dx
Solution: This is an example of Case 3
2
/ sinzx COS4_‘L‘dx = / (l SOS 2x) (l + SOS 2)5) dx m and n both even
= é/ (1 — cos2x)(1 + 2cos2x + cos®2x) dx
= é/ (1 + cos2x — cos?2x — cos® 2x) dx
= % {x + %sin 2x — ](00522x + cos’2x) dx].
For the term involving cos’ 2x, we use
/00522xdx = %/ (1 + cos4x)dx
— i ¥ + lsin 4x ). Qmittin_g the cc_mst:.mtof
2 | integration until the final result

For the cos® 2x term, we have

f0053 2xdx = / (1 — sin”2x) cos 2x dx
g Cuvde = L sin e — Lain?
= 2/ (1 — u”)du 5 (sm2x 7 sin Zx)
Combining everything and simplifying, we get
sinz’ccosfl)ca’x:L x—lsin4x+lsin32x + C
. ’ 16 4 3 '
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Example#4: Evaluate fon/4\/1 + cos 4x dx

Solution: To eliminate the square root, we use the identity;

1 + cos 26

7 or 1 + cos26 = 2cos*f.

cos’ @ =

With 8 = 2x, this becomes

1 + cosdx = 2cos’ 2x.

Therefore,

/4 /4 /4
/ V1 +cos4xdx=/ \/2c0322xdx=/ \/E\/COSZQ.\TGIX
JO 0 0

/4 r /4

- \6] |c052x|dx=\/§] cos 2x dx
0 0

= V2 {Sin ZXTM V2 V2

2 [1=0]=-3"

0 2

Example#5: Evaluate [ tan*x dx

Solution: /tan4xdx= /tanzx-tanzxdx = /tal‘lzx'(SGCZJC— 1) dx

= /tanzxseczxdx - /tanzxdx

Z/tanzxseczxdx —/(seczx— 1)dx

= /tanzxseczxdx — /seczxdx + /dx.

In the first integral, we let

u = tanx, du = sec® x dx
and have

/uzdu :%u3 + (.

The remaining integrals are standard forms, so

ftan“xdx = %tarﬁx — tanx + x + C.
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Note that; i x sin nx = %[cos (m — n)x — cos (m + n)x],
sin mx cos nx = %[sin (m — n)x + sin(m + n)x],
COS MX COS nX = %[cos (m — n)x + cos (m + n)x].

Example#6: Evaluate [ sin 3x cos5x dx

Solution: With, m = 3 and n = 5, we get;

/ sin 3x cos Sx dx = %/ [sin (—2x) + sin 8x] dx

— %/ (sin 8x — sin 2x) dx

_cos8x | cos2x

16 + 4 + C.
H.W.: Evaluate the following integrals;
1) ffn sin 3x sin 3x dx Answer: |
2) [ sin?6 cos 360 do Answer: | & sin 30 — 1 sin® — o sin30 + C
3) [ iif; dx Answer: sec x — In |csc x + cotx| + C

4) Trigonometric Substitutions

This method occurs when we replace the variable of integration by a trigonometric

functions; x = atanf,x = a sinf,and x = a sec8, which are used for transforming

integrals like; Va2 + x2,Va? — x2,and Vx2 — a? into simple integrals, Now,

Withx = atan@,

a’> +x* =a*>+ a*tan’ 6 = a*(1 + tan’6) = a?sec’d.

With x

asiné,

a’ —x*> =a’> = a’sin’0 = a*(1 — sin* ) = a’ cos’ 0.

Withx = asec9,

x> —a?=a’sec’0 — a® = a’*(sec’0 — 1) = a*tan’ 6
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d
Example#l: Evaluate [ \/ﬁ

Solution: we assume, x = 2 tanf, dx = 2 sec?6 d6
S0,4+ x% =4+ 4 tan?0 = 4(1 + tan?0) = 4 sec?0

Then
2sec’8df _ [ sec’d

dx _ _
/ V4 +x2  J Vdseto . |sec 8]

Zfsecﬂdﬁ

= In |secO + tan6| + C

N ‘v4+x2
—1]1 #—F

Vsec? 6 = |sec |

+ C.

L3
2

x2dx

Example#2: Evaluate [ =

Solution: we assume x = 3 sinf, dx = 3 cos6 df
9 —x?=9—9sin’0 = 9(1 — sin’H) = 9cos?H.
Then
/ x>dx [ 9sin*6-3cos0do

Vo — 2 . |3 cos 6]
—9/sin29d9
1 — cos 20
[ 1=y,

_9(, sin26
-5 (0-12) + ¢

= 2(9 — sinfcosh) + C

I
No)

2

9 ax x V9 —x?
=_|lsin ' T —5+— 55— +C

2 3 3 3
—%Sm—'%—g\/g—xu C
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dx

Example#3: Evaluate fm

Solution: we first rewrite the square root as;

V2sx2 —4 =, /25(x2 - %)
o)

To put under the square root in the form of x %-a ?;
x:%secﬂ, dx:%secﬂtanﬂdﬂ,

= 25(sec 0—1) 25tan 0
2
2_ (2) 22 _2
x (5 =3 |tan 8| = stand.
With these substitutions, we have
" (2/5) sec O tan 6 d6

‘ dx _ / dx _
/ V25x* — 4 5Vx? — (4/25) 5-(2/5)tan 6
= lf sec0do = éln |sec® + tanf| + C

5
Sx V25x2—4+c

1

=z |3+ 5
H.W.: Evaluate the integrals;
1) f03/2 \/% Answer: | 71T/6
Z)I% Answer: %ln%+w +C

5) Integration of Rational Function by Partial Fractions

. . . 5x-3 . . -
Here we show how to express a “rational function” like —~——, which is difficult to

: : : . o2 3 .
integrate, as a sum of simpler form, called “partial fraction” like Tt which is

easy to integrate. So, Sx =3 2 3
= +
x2—2x—3 x+1 x-=3

Then, we can integrate;

o 5x—3 B 2 3
(x+l)(x—3)dx/x+ldx+fx—3
=2Injx+ 1| +3In|x=3]|+C

dx
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Benefitting from analyzing (x? - 2x - 3) into (x + 1) * (x - 3) using any common method,

therefore; 5 — 3 4 B

x2_2x_37x+1+x—3

To write the equation in this form multiplying both sides by (x* — 2x — 3), we get;
5x —3=A(x—=3)+B(x+1)=(4 +Bx—34 +B
A+ B =35, —34 + B = 3.
Solving these equations simultaneously gives 4 = 2and B = 3

Then integrate the new two-part simple function to get the result.

x?+4x+1
(x—1)(x+1)(x+3)

Example#1: Use partial fraction to evaluate [

. 2
So|ut|on: x“+4dx + 1 A n B n C

G-Dx+Dx+3) x—-1 x+1 x+3°

To find the values of the undetermined coefficients A4, B, and C, we clear fractions and get
PHdx+ 1l =Ax+ Dx+3)+Bx=1Dx+3)+Cx—=1Dkx+1)
= Ax> + 4x +3) + B(x* + 2x — 3) + C(x* - 1)
= A+ B+ COx*+ (44 + 2B)x + (34 — 3B — C).

The polynomials on both sides of the above equation are identical, so we equate coeffi-
cients of like powers of x, obtaining

Coefficient of x2: A+ B+C=1
Coefficient of x !: 44 + 2B =4
Coefficient of x*: 34=3B—-C=1

There are several ways of solving such a system of linear equations for the unknowns 4, B,
and C, including elimination of variables or the use of a calculator or computer. Whatever
method is used, the solutionis 4 = 3/4, B = 1/2,and C = —1/4. Hence we have

x4+ 4+ 1 . = 3 1 +l 11 1 I
(x=1Dkx+ D+ 3) 4x—1 2x+1 4x+3

3. 1 1
=Z]n|x—l|+§]n|x—l-l|—zln|x—l-3|+K,
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. . 6x+7
Example#2: Use partial fraction to evaluate [ dx
(x+2)?
Solution: x+7 4 , B
(x+27? *+2 (x+2)7
6bx +7=A(x+2)+ B Multiply both sides by (x + 2)?.
= Ax + (24 + B)

Equating coefficients of corresponding powers of x gives

A=6 and 24+ B =12+ B =17, or A=06 and B = -5

bx +7 , 6 __ 5
(x+2)2dx f(x“ (x+2)2)d‘x

| dx _
—6/x+2—5f(x+2)2dx

=6ln|x +2| +5(x+2)7'+C.

Therefore,

2x3—4x2%2—x-3
x2-2x-3

Example#3: Use partial fraction to evaluate [ dx

Solution: Note that the numerator has higher power in x than the denominator.

First we divide the numerator into the denominator to get a polynomial plus a proper
fraction.

2x
x2—=2x —3)2x3 —4x2— x —3
2x3 — 4x? — 6x

S5x— 3
Then we write the improper fraction as a polynomial plus a proper fraction.
3 _ 2 _ . —
2x . 4x x—=3 _ 2 + — Sx—3
x“—2x—3 x°—2x—3

/Zx ;4x _x_3dx /2xcbc+/ x—3
X< — 2x —
—/2xdx+/ 1

=x>+2In|x+ 1] +3In|x — 3| + C.

H.W.: Use partial fraction method to evaluate the following integrals;
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5x—13

)f Answer: x33+x32
(x=3)(x—-2)
) f x+4 R _ I 3
e R R BT
t?+8 17 . —12
3)fmdt Answer: 1-i-£_3+£_2

6) Improper Integrals

Consider the infinite region that lies under the curves y = \/%

fortherange 0 - 1 and y = 1;1_2x for the range 1 — oo in the first

guadrant. You might think that these regions have infinite areas,

but we will see that the values are finite.

To solve this problem, for example consider the infinite region

that lies under the curve y = e~*/2 in the first quadrant. First

find the area A(b) of the portion fromx =0to x = b,

b b
A(b) = ] e™?dx = —2e-*/2}
0

0

= 2702 12

Then find the limit of A(b) as b — o0
lim A(b) = lim (—2e7%? + 2) = 2.
b—o0 h—o0

The value we assign to the area under the curve from 0 to ©0 1s

00 b
/ e™2dx = lim [ e ™ dy = 2.
Jo b—0o0 o

DEFINITION Integrals with infinite limits of integration are improper
integrals of Type 1.

1. If f(x) is continuous on [a, 00), then

00 b
] fx)dx = ZlLHSQ/ flx)dx.

2. If f(x) is continuous on (—00, b], then

b b
/ flx)dx = _l)irlle fx) dx.

3. If f(x) is continuous on (— o0, 00), then

/mf(x)dx= / F) dx -+ /mf(x)dx,

where ¢ is any real number.
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Example#1: Is the area under the curve y = (Inx)/x? from x = 1 to x = o finite? If

so, what is its value?

lution: "Inx 1 "(1\(1
s [ 1] - 1))
1 X 1 1
:_ln__Hb
b X
__Imb _ 1
= b b+l
The limit of the area as b — ©0 is
“Inx blnx
1 X b—0 J1 X
_ o [_mb 1
_bll?%o{ b b+1]
Z—{limﬁ}—ﬂﬁ-l
h—00 b
, b
:—{llm—‘|+]:0+]:1.
h—> 00 1

Thus, the improper integral converges and the area has finite value 1.

Integration by parts with
u = Inx, dv = dx/x*,

du = dx/x, v=—1/x

I’Hopital’s Rule

© dx
Example#2: Evaluate [

00 1+4x2

ik O dx "
2 2
— 1 + x —o 1 + x Jo

dx

Solution:

Area=m

Next we evaluate each improper integral on the right side of the equation above.

0 "0

dx _ dx
o 1 + x2 a——x), 1+ x2
0
= |im tan_lx]
a——020 a

lim (tan™'0 — tan"' q)
aq——o0
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f’" d _ boax
= m
o 1+x% b—cofy 1+ x2

b
= lim tan_lx]

bh—00 0
— B B AP | _ T _n_ T
= bli)néo(tdn b — tan™' 0) > 0 >

Thus,
Vdx  _m o om_
/—cx, 1+ x2 a 2 - 2 T
6+1
H.W.: Evaluate: a) fO m do Answer: | V3

b) fO (1+x)\/; Answer: | 1T
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